Skip to main content
Log in

Molecular insight into genetic differentiation, population structure and banding pattern analysis of Bambara groundnut (Vigna subterranea [L.] Verdc.) linked with inter simple sequence repeats (ISSR)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

A set of 44 selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions was sampled from 11 distinct populations of four geographical zones to assess the genetic drift, population structure, phylogenetic relationship, and genetic differentiation linked with ISSR primers.

Methods and results

The amplification of genomic DNA with 32 ISSR markers detected an average of 97.64% polymorphism while 35.15% and 51.08% polymorphism per population and geographical zone, respectively. Analysis of molecular variance revealed significant variation within population 75% and between population 25% whereas within region 84% and between region 16%. The Bidillali exposed greater number of locally common band i.e., NLCB (≤ 25%) = 25 and NLCB (≤ 50%) = 115 were shown by Cancaraki while the lowest was recorded as NLCB (≤ 25%) = 6 and NLCB (≤ 50%) = 72 for Roko and Maibergo, accordingly. The highest PhiPT value was noted between Roko and Katawa (0.405*) whereas Nei’s genetic distance was maximum between Roko and Karu (0.124). Based on Nei’s genetic distance, a radial phylogenetic tree was constructed that assembled the entire accessions into 3 major clusters for further confirmation unrooted NJ vs NNet split tree analysis based on uncorrected P distance exposed the similar result. Principal coordinate analysis showed variation as PC1 (15.04%) > PC2 (5.81%).

Conclusions

The current study leads to prompting the genetic improvement and future breeding program by maximum utilization and better conservation of existing accessions. The accessions under Cancaraki and Jatau are population documented for future breeding program due to their higher genetic divergence and homozygosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and full length of gel or blots are represented in supplementary file.

Abbreviations

DNA:

Deoxy ribonucleic acid

RNA:

Ribonucleic acid

ISSR:

Inter simple sequence repeat

NJ:

Neighbour joining

NNet:

Neighbour network

PCR:

Polymerase chain reaction

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

AFLP:

Amplified fragment length polymorphism

GPS:

Global positioning system

CATB:

Cetyl trimethylammonium bromide

EDTA:

Ethylenediaminetetraacetic acid

PCoA:

Principal coordinate analysis

MVSP:

Multivariate statistical packages

UPGMA:

Unweighted Pair Group Method with Arithmetic Mean

MEGA:

Molecular evolutionary genetic analysis

AMOVA:

Analysis of molecular variance

MCMC:

Markov Chain Monte Carlo

CLUMPAK:

Cluster Markov Packager Across K

References

  1. Verdcourt B (1980) The correct name for the Bambara groundnut. Kew Bull 35(3):474

    Article  Google Scholar 

  2. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:525534-1. Accessed 21 May 2023

  3. Rungnoi O, Suwanprasert J, Somta P, Srinives P (2012) Molecular genetic diversity of Bambara groundnut (Vigna subterranea L. Verdc.) revealed by RAPD and ISSR marker analysis. SABRAO J Breed Genet 44(1)

  4. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al-Mamun M (2021) Bambara groundnut (Vigna subterranea L. Verdc.): a crop for the New Millennium, Its genetic diversity, and improvements to mitigate future food and nutritional challenges. Sustainability 13(10):5530

    Article  CAS  Google Scholar 

  5. Molosiwa OO, Aliyu S, Stadler F, Mayes K, Massawe F, Kilian A, Mayes S (2015) SSR marker development, genetic diversity and population structure analysis of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces. Genet Resour Crop Evol 62(8):1225–1243

    Article  CAS  Google Scholar 

  6. Olukolu BA, Mayes S, Stadler F, Ng NQ, Fawole I, Dominique D, Azam-Ali SN, Abbott AG, Kole C (2012) Genetic diversity in Bambara groundnut (Vigna subterranea [L.] Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genet Resour Crop Evol 59:347–358

    Article  Google Scholar 

  7. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun A, Khaliqi A (2022) Unveiling genetic diversity, characterization, and selection of Bambara groundnut (Vigna subterranea L. Verdc.) accessions reflecting yield and yield components in tropical Malaysia. BioMed Res Int. https://doi.org/10.1155/2022/6794475

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al-Mamun M (2021) AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) accessions under the multi-environmental trails (METs). Sci Rep 11:22791. https://doi.org/10.1038/s41598-021-01411-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mbosso C, Boulay B, Padulosi S, Meldrum G, Mohamadou Y, Niang AB et al (2020) Fonio and Bambara groundnut value chains in Mali: issues, needs, and opportunities for their sustainable promotion. Sustainability 12:4766. https://doi.org/10.3390/su12114766

    Article  Google Scholar 

  10. Halimi RA, Barkla BJ, Mayes S, King GJ (2019) The potential of the underutilized pulse Bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. J Food Compos Anal 77:47–59

    Article  Google Scholar 

  11. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M (2022) Path-coefficient and correlation analysis in Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions over environments. Sci Rep 12(1):1–12

    Google Scholar 

  12. Lin Tan X, Azam-Ali S, Goh EV, Mustafa MA, Chai HH, Kuan Ho W, Massawe F (2020) Bambara groundnut: an underutilized leguminous crop for global food security and nutrition. Front Nutr 7:276

    Google Scholar 

  13. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M (2022) Hereditary analysis and genotype× environment interaction effects on growth and yield components of Bambara groundnut (Vigna subterranea (L.) Verdc.) over multi-environments. Sci Rep 12(1):15658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kouassi NJ, Bi IZ (2010) Effect of sowing density and seedbed type on yield and yield components in Bambara groundnut (Vigna subterranea) in woodland savannas of Cote d’Ivoire. Exp Agric 46(1):99–110

    Article  Google Scholar 

  15. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun A (2020) Genetic variability, heritability, and clustering pattern exploration of Bambara groundnut (Vigna subterranea L. Verdc) accessions for the perfection of yield and yield-related traits. BioMed Res Int

  16. Mohammed SM, Shimelis HA, Laing MD (2019) Genetic diversity of Bambara groundnut accessions (Vigna subterranea [L.] Verdc.) revealed by SSR markers. Society for Underutilized Legumes. J Underutilized Legumes. 1(1):169–182

    Google Scholar 

  17. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun A (2022) Bambara groundnut (Vigna Subterranea L. Verdc): a model underutilized legume, its resiliency to drought and excellency of food & nutrient values—a review. Malays J Genet 2:59–74

    Google Scholar 

  18. Fatimah S, Ardiarini NR (2018) Genetic diversity of Madurese Bambara groundnut (Vigna subterranea L. Verdc.) lines based on morphological and RAPD markers. SABRAO J Breed Genet 50(2)

  19. Massawe FJ, Roberts JA, Azam-Ali SN, Davey MR (2003) Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc) landraces assessed by Random Amplified Polymorphic DNA (RAPD) markers. Genet Resour Crop Evol 50(7):737–741

    Article  CAS  Google Scholar 

  20. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113(3):163–185

    Article  CAS  Google Scholar 

  21. Khan MMH, Rafii MY, Ramlee SI et al (2021) DNA fingerprinting, fixation-index (Fst), and admixture mapping of selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions using ISSR markers system. Sci Rep 11:14527. https://doi.org/10.1038/s41598-021-93867-5

    Article  CAS  PubMed Central  Google Scholar 

  22. Odeigah PGC, Osanyinpeju AO (1998) Evaluating the genetic biodiversity of Bambara groundnut accessions from Nigeria using SDS-polyacrylamide gel electrophoresis. Genet Resour Crop Evol 45(5):451–458

    Article  Google Scholar 

  23. Siise A, Massawe FJ (2013) Microsatellites based marker molecular analysis of Ghanaian Bambara groundnut (Vigna subterranea (L.) Verdc.) landraces alongside morphological characterization. Genet Resour Crop Evol 60(2):777–787

    Article  CAS  Google Scholar 

  24. Odongo FO, Oyoo ME, Wasike V, Owuoche JO, Karanja L, Korir P (2015) Genetic diversity of Bambara groundnut (Vigna subterranea (L.) verdc.) landraces in Kenya using microsatellite markers. Afr J Biotechnol 14(4):283–291

    Article  CAS  Google Scholar 

  25. Nilkanta H, Amom T, Tikendra L, Rahaman H, Nongdam P (2017) ISSR marker-based population genetic study of Melocanna baccifera

  26. Oumer OA, Dagne K, Feyissa T, Tesfaye K, Durai J, Hyder MZ (2020) Genetic diversity, population structure, and gene flow analysis of lowland bamboo [Oxytenanthera abyssinica (A. Rich.) Munro] in Ethiopia. Ecol Evol 10(20):11217–11236

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alansi S, Tarroum M, Al-Qurainy F, Khan S, Nadeem M (2016) Use of ISSR markers to assess the genetic diversity in wild medicinal Ziziphus spina-christi (L.) Willd collected from different regions of Saudi Arabia. Biotechnol Biotechnol Equip 30(5):942–947

    Article  CAS  Google Scholar 

  28. Zheng K (1995) Rapid DNA isolation for marker assisted selection in rice breeding. Rice Genet Newsl 12:255–258

    Google Scholar 

  29. Yeh FC, Yang RC, Boyle T (1999) POPGENE version 1.32: Microsoft Windows–based freeware for population genetic analysis, quick user guide. Center for International Forestry Research, University of Alberta, Edmonton, Alberta, Canada, pp 1–29

  30. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31(1):353–373

    Article  Google Scholar 

  32. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  33. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220

    CAS  PubMed  Google Scholar 

  35. Bland JM, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 327(8476):307–310

    Article  Google Scholar 

  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267

    Article  CAS  PubMed  Google Scholar 

  38. Pritchard JK, Wen W, Falush D (2010) Documentation for STRUCTURE software: version 2. University of Chicago, Chicago

    Google Scholar 

  39. Wu W, Chen F, Yeh K, Chen J (2019) ISSR analysis of genetic diversity and structure of plum varieties cultivated in southern China. Biology 8(1):2

    Article  CAS  Google Scholar 

  40. Zimisuhara B, Valdiani A, Shaharuddin NA, Qamaruzzaman F, Maziah M (2015) Structure and principal components analyses reveal an intervarietal fusion in Malaysian mistletoe fig (Ficus deltoidea Jack) populations

  41. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  42. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  43. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barbosa C, Trevisan R, Estevinho TF, Castellani TT, Silva-Pereira V (2019) Multiple introductions and efficient propagule dispersion can lead to high genetic variability in an invasive clonal species. Biol Invasions 21(11):3427–3438

    Article  Google Scholar 

  45. Arolu IW, Rafii MY, Hanafi MM, Mahmud TMM, Latif MA (2012) Molecular characterization of ’Jatropha curcas’ germplasm using inter simple sequence repeat (ISSR) markers in Peninsular Malaysia. Aust J Crop Sci 6(12):1666–1673

    Google Scholar 

  46. Carkeet A (2015) Exact parametric confidence intervals for Bland-Altman limits of agreement. Optom Vis Sci 92(3):e71–e80

    Article  PubMed  Google Scholar 

  47. Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G (2019) Genetic diversity of torch ginger (Etlingera elatior) germplasm revealed by ISSR and SSR markers. BioMed Res Int

  48. Mastan S, Sudheer P, Rahman H, Ghosh A, Rathore M, Ravi Prakash C, Chikara J (2012) Molecular characterization of intra-population variability of Jatropha curcas L. using DNA based molecular markers. Mol Biol Rep 39(4):4383–4390

    Article  CAS  PubMed  Google Scholar 

  49. Kumar A, Mishra P, Singh SC, Sundaresan V (2014) Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L., a medicinal plant. Plant Syst Evol 300(6):1409–1420

    Article  Google Scholar 

  50. Tian B, Yang HQ, Wong KM, Liu AZ, Ruan ZY (2012) ISSR analysis shows low genetic diversity versus high genetic differentiation for giant bamboo, Dendrocalamus giganteus (Poaceae: Bambusoideae), in China populations. Genet Resour Crop Evol 59(5):901–908

    Article  Google Scholar 

  51. Asra R, Syamsuardi S, Mansyurdin M, Witono JR (2014) The study of genetic diversity of Daemonorops draco (Palmae) using ISSR markers. BIODIVERSITAS J Biol Divers 15(2)

  52. Teixeira H, Rodríguez-Echeverría S, Nabais C (2014) Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR. PLoS ONE 9(2):e88996

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nair VD, Raj RPD, Panneerselvam R, Gopi R (2014) Assessment of diversity among populations of Rauvolfia serpentina Benth. Ex. Kurtz. from Southern Western Ghats of India, based on chemical profiling, horticultural traits and RAPD analysis. Fitoterapia 92:46–60

    Article  CAS  PubMed  Google Scholar 

  54. Mukakalisa C, Kandawa-Schulz M, Mapaure I (2011) Genetic diversity in landraces of Bambara groundnut found in Namibia using RAPD markers. In: II international symposium on underutilized plant species: crops for the future-beyond food security 979, pp 683–687

  55. Dos Santos LF, de Oliveira EJ, dos Santos Silva A, de Carvalho FM, Costa JL, Pádua JG (2011) ISSR markers as a tool for the assessment of genetic diversity in Passiflora. Biochem Genet 49(7–8):540–554

    Article  CAS  PubMed  Google Scholar 

  56. Stavridou E, Lagiotis G, Karapetsi L, Osathanunkul M, Madesis P (2020) DNA fingerprinting and species identification uncovers the genetic diversity of Katsouni Pea in the Greek Islands Amorgos and Schinoussa. Plants 9(4):479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M (2021) Genetic analysis and selection of Bambara groundnut (Vigna subterranea [L.] Verdc.) landraces for high yield revealed by qualitative and quantitative traits. Sci Rep 11(1):1–21

    CAS  Google Scholar 

  58. Li H, Chappell M, Zhang D (2020) Assessing genetic diversity and population structure of Kalmia latifolia L. in the Eastern United States: an essential step towards breeding for adaptability to southeastern environmental conditions. Sustainability 12(19):8284

    Article  Google Scholar 

Download references

Acknowledgements

The Bangladesh Agricultural Research Council (BARC-Project of NATP Phase-II) and Bangladesh Agricultural Research Institute (BARI) of the People’s Republic of Bangladesh are gratefully acknowledged by the writers. Another deserving of praise is Malaysia’s University Putra Malaysia (UPM).

Funding

Bangladesh Agricultural Research Council (BARC- Project of NATP Phase-II), The People’s Republic of Bangladesh, World Bank, IFAD, and Universiti Putra Malaysia (Research Grant: Vote number 6282518).

Author information

Authors and Affiliations

Authors

Contributions

MMHK and MYR created the paper’s concept, design, and methodology. MMHK collected the data. MMHK performed statistical analysis, used software, and interpreted the results. MMHK wrote the first draft and prepared the text. MYR is in charge of supervision. SIR and MJ investigate the situation. MMHK, BCK, and MAM wrote the article; they also reviewed and edited it. The final published version of the paper has been reviewed and approved by all authors.

Corresponding author

Correspondence to Md Mahmudul Hasan Khan.

Ethics declarations

Competing interests

The authors declare that they have no conflict interests in this paper.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 519 kb)

Supplementary file2 (PDF 269 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M.H., Rafii, M.Y., Ramlee, S.I. et al. Molecular insight into genetic differentiation, population structure and banding pattern analysis of Bambara groundnut (Vigna subterranea [L.] Verdc.) linked with inter simple sequence repeats (ISSR). Mol Biol Rep 50, 7619–7637 (2023). https://doi.org/10.1007/s11033-023-08693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08693-x

Keywords

Navigation