Skip to main content

Advertisement

Log in

Exploring the genetic diversity and population structure of upland cotton germplasm by iPBS-retrotransposons markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Upland cotton is one of the utmost significant strategic fiber crops, and play a vital role in the global textile industry.

Methods and results

A total of 128 genotypes comprised Gossypium hirsutum L, Gossypium barbadense L., and pure lines were used to examine genetic diversity using iPBS-retrotransposon markers system. Eleven highly polymorphic primers yielded 287 bands and 99.65% polymorphism was recorded. The mean polymorphism information content was estimated at 0.297 and the average diversity indices for the effective number of alleles, Shannon’s information index, and overall gene diversity were 1.481, 0.443, and 0.265, respectively. The analysis of molecular variance (AMOVA) revealed that 69% of the genetic variation was within the population. A model-based STRUCTURE algorithm divided the entire germplasm into four populations and one un-classified population, the genotypes G42 (originating in Egypt) and G128 (originating in the United States), showed the highest genetic distance (0.996) so these genotypes could be suggested for breeding programs as parental lines.

Conclusions

This is the first investigation using an iPBS-retrotransposon marker system to examine the genetic diversity and population structure of upland cotton germplasm. The rich diversity found in upland cotton germplasm could be exploited as a genetic resource when developing breeding programs and could also help with efforts to breed cotton around the world. These findings also show the applicability and effectiveness of iPBS-retrotransposons for the molecular characterization of cotton germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used for the current study ıs provided in this manuscript.

References

  1. Khan MA, Wahid A, Ahmad M, Tahir MT, Ahmed M, Ahmad S, Hasanuzzaman M (2020) World Cotton Production and Consumption: an overview. In: Ahmad S, Hasanuzzaman M (eds) Cotton Production and uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_1

    Chapter  Google Scholar 

  2. Xiao G, Zhao P, Zhang Y (2019) A pivotal role of hormones in regulating cotton fiber development. Front Plant Sci 10(87). https://doi.org/10.3389/fpls.2019.00087

  3. Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V (2014) Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L). Theor Appl Genet 127(2):283–295. https://doi.org/10.1007/s00122-013-2217-3

    Article  PubMed  Google Scholar 

  4. Jabran K, Ul-Allah S, Chauhan BS, Bakhsh A (2019) An Introduction to Global Production Trends and Uses, History and Evolution, and Genetic and Biotechnological Improvements in cotton. Hoboken, NJ: wiley online library. https://doi.org/10.1002/9781119385523.ch1

  5. Saleem MA, Qayyum A, Malik W, Amjid MW (2020) Molecular breeding of cotton for Drought stress tolerance. In: Ahmad S, Hasanuzzaman M (eds) Cotton Production and uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_1

    Chapter  Google Scholar 

  6. Basal H, Karademir E, Goren HK, Sezener V, Dogan MN, Gencsoylu I, Erdogan O (2019) Cotton production in turkey and Europe. In: Jabran K, Chauhan BS (eds) Cotton Production. John Wiley & Son Inc., New York, NY, USA, pp 297–321

    Chapter  Google Scholar 

  7. Hayat K, Bardak A, Parlak D, Ashraf F, Imran HM, Haq HA, Mian MA, Mehmood Z, Akhtar MN (2020) Biotechnology for Cotton Improvement. In: Ahmad S, Hasanuzzaman M (eds) Cotton Production and uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_1.

    Chapter  Google Scholar 

  8. Malik W, Ashraf J, Iqbal MZ, Khan AA, Qayyum A, Abid MA, Noor E, Ahmad MQ, Abbasi GH (2014) Molecular markers and cotton genetic improvement: Current status and future prospects. The Scientific World Journal, 2014, 1–15. https://doi.org/10.1155/2014/607091

  9. Tokel D, Dogan I, Hocaoglu-Ozyigit A, Ozyigit II (2022) Cotton Agriculture in Turkey and Worldwide Economic Impacts of turkish cotton. J Nat Fib 6:1–20

    Google Scholar 

  10. USDA, United States Department of Agriculture Foreign Agricultural Service (2020a), December 2020 Report, Cotton: World Markets and Trade, 1–28. https://downloads.usda.library.cornell.edu/usda-esmis /

  11. Yilmaz I, Akcaoz H, Ozkan B (2005) An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy 30:145–155. https://doi.org/10.1016/j.renene.2004.06.001

    Article  Google Scholar 

  12. Daǧdelen N, Başal H, Yilmaz E, Gürbüz T, Akçay S (2009) Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agric Water Manage 96(1):111–120. https://doi.org/10.1016/j.agwat.2008.07.003

    Article  Google Scholar 

  13. Rana MK, Bhat KV (2005) RAPD markers for genetic diversity study among indian cotton cultivars. Curr Sci 88(12):1956–1961

    Google Scholar 

  14. Dongre AB, Bhandarkar M, Banerjee S (2007) Genetic diversity in tetraploid and diploid cotton (Gossypium spp.) using ISSR and microsatellite DNA markers. Indian J Biotechnol 6:349–353

    CAS  Google Scholar 

  15. Li Z, Wang X, Zhang Y, Zhang G, Wu L, Chi J, Ma Z (2008) Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers. Front Agric China 2(3):245–252. https://doi.org/10.1007/s11703-008-0063-x

    Article  Google Scholar 

  16. Murtaza N (2006) Cotton genetic diversity study by AFLP markers. Electron J Biotechnol 9(4):1–5. https://doi.org/10.2225/vol9-issue4-fulltext-9

    Article  CAS  Google Scholar 

  17. Hocaoglu-ozyigit A, Ucar B, Altay V, Ozyigit II (2020) Genetic diversity and phylogenetic analyses of turkish cotton (Gossypium hirsutum L.) lines using ISSR markers and Chloroplast trnL-F regions. J Nat Fibers 1–14. https://doi.org/10.1080/15440478.2020.1788493

  18. Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285. https://doi.org/10.1080/13102818.2017.1400401

    Article  CAS  Google Scholar 

  19. Baloch FS, Alsaleh A, de Miera LES, Hatipoğlu R, Çifti V et al (2015) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252. https://doi.org/10.1016/j.bse.2015.06.017

    Article  CAS  Google Scholar 

  20. Yıldız M, Koçak M, Baloch FS (2015) Genetic bottlenecks in turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment. Genet Mol Res 14:10588–10602. https://doi.org/10.4238/2015.September.8.20

    Article  CAS  PubMed  Google Scholar 

  21. Demirel U, Tındaş İ, Yavuz C, Baloch F, Çalışkan M (2018) Assessing genetic diversity of potato genotypes using inter-PBS retrotransposon marker system. Plant Genetic Resources: Characterization and Utilization 16(2):137–145. https://doi.org/10.1017/S1479262117000041

    Article  CAS  Google Scholar 

  22. Yaldız G, Camlica M, Nadeem MA, Nawaz MA, Baloch FS (2018) Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turk J Agric For 42:154–164. https://doi.org/10.3906/tar-1708-32

    Article  CAS  Google Scholar 

  23. Ali F, Yılmaz A, Nadeem MA, Habyarimana E, Subaşı I et al (2019) Mobile genomic element diversity in world collection of safower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers. PLoS ONE 14(2):1–19. https://doi.org/10.1371/journal.pone.0211985

    Article  CAS  Google Scholar 

  24. Yıldız M, Koçak M, Nadeem MA, Cavagnaro P, Barboza K et al (2019) Genetic diversity analysis in the turkish pepper germplasm using iPBS retrotransposon-based markers. Turk J Agric For 44:1–14. https://doi.org/10.3906/tar-1902-10

    Article  CAS  Google Scholar 

  25. Barut M, Nadeem MA, Karaköy T, Baloch FS (2020) DNA fngerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turk J Agric For 44:479–491. https://doi.org/10.3906/tar-2001-10

    Article  CAS  Google Scholar 

  26. Shimira F, Boyaci HF, Yeter Ç, Nadeem MA, Baloch FS, Taskin H (2021) Exploring the genetic diversity and population structure of scarlet eggplant germplasm from Rwanda through iPBS retrotransposon markers. Mol Biol Rep. https://doi.org/10.1007/s11033-021-06626-0

    Article  PubMed  Google Scholar 

  27. Baloch FS, Guizado SJ, Altaf MT, Yüce I, Çilesiz Y, Bedir M, Nadeem MA, Hatipoglu R, Gómez JC (2022) Applicability of inter-primer binding site iPBS-retrotransposon marker system for the assessment of genetic diversity and population structure of peruvian rosewood (Aniba rosaeodora Ducke) germplasm. Mol Biol Rep 49(4):2553–2564

    Article  CAS  PubMed  Google Scholar 

  28. Kalendar R, Antonius K, Smýkal P, Schulman HA (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121:1419–1430. https://doi.org/10.1007/s00122-010-1398-2

    Article  CAS  PubMed  Google Scholar 

  29. Milovanov A, Zvyagin A, Daniyarov A et al (2019) Genetic analysis of the grapevine genotypes of the russian Vitis ampelographic collection using iPBS markers. Genetica 147:91–101. https://doi.org/10.1007/s10709-019-00055-5

    Article  PubMed  Google Scholar 

  30. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  31. Baloch, F. S., Guizado, S. J. V., Altaf, M. T., Yüce, I., Çilesiz, Y., Bedir, M.,… Gómez, J. C. C. (2022). Applicability of inter-primer binding site iPBS-retrotransposon marker system for the assessment of genetic diversity and population structure of Peruvian rosewood (Aniba rosaeodora Ducke) germplasm. Molecular Biology Reports, 49(4),2553–2564

  32. Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM (2000) PopGene32, Microsoft Windows-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre—University of Alberta, Edmonton

    Google Scholar 

  33. Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp). Mol Breed 6(2):125–134. https://doi.org/10.1023/A:1009680614564

    Article  Google Scholar 

  34. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  35. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  36. Adawy SS, Hussein EHA, El-itriby HA (2006) Molecular characterization and genetic relationships among cotton genotypes 2- AFLP analysis. Arab J Biotechnol 9(3):477–492

    Google Scholar 

  37. Esmail RM, Zhang JF, Adel-Hamid AM (2008) Genetic diversity in Elite Cotton Germplasm Lines using field performance and rapd markers. World J Agricultural Sci 4(3):369–375

    Google Scholar 

  38. Liu Z, Zhang Y, Zhang S, Deng K, Dong S, Ren Z (2011) Genetic diversity analysis of various red spider mite- resistant upland cotton cultivars based on RAPD. Afr J Biotechnol 10(18):3515–3520. https://doi.org/10.5897/AJB10.832

    Article  CAS  Google Scholar 

  39. Noormohammadi Z, Shojaei-jesvaghani F, Sheidai M, Farahani F, Alishah O (2011) Inter simple sequence repeats (ISSR) and random amplified polymorphic DNA (RAPD) analyses of genetic diversity in Mehr cotton cultivar and its crossing progenies. Afr J Biotechnol 10(56):11839–11847. https://doi.org/10.5897/AJB11.1377

    Article  CAS  Google Scholar 

  40. Noormohammadi Z, Farahani YH, Sheidai M, Ghasemzadeh-Baraki S, Alishah O (2013a) Genetic diversity analysis in Opal cotton hybrids based on SSR, ISSR, and RAPD markers. Genet Mol Res 12(1):256–269. https://doi.org/10.4238/2013.January.30.12

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Wang XF, Li ZK, Zhang GY, Ma ZY (2011) Assessing genetic diversity of cotton cultivars using genomic and newly developed expressed sequence tag-derived microsatellite markers. Genet Mol Res 10(3):1462–1470. https://doi.org/10.4238/vol10-3gmr1277

    Article  CAS  PubMed  Google Scholar 

  42. De Magalhães Bertini CHC, Schuster I, Sediyama T, de Barros EG, Moreira MA (2006) Characterization and genetic diversity analysis of cotton cultivars using microsatellites. Genet Mol Biology 29(2):321–329. https://doi.org/10.1590/S1415-47572006000200021

    Article  Google Scholar 

  43. Chen G, Du, Xiong-ming D (2006) Genetic diversity of source germplasm of Upland Cotton in China as determined by SSR marker analysis. Acta Genetica Sinica 33(8):733–745. https://doi.org/10.1016/S0379-4172(06)60106-6

    Article  CAS  PubMed  Google Scholar 

  44. Khan AI, Fu Y, Khan IA (2009) Genetic diversity of pakistani cotton cultivars as revealed by simple sequence repeat markers. Commun Biometry Crop Sci 4(1):21–30

    Google Scholar 

  45. Campbell BT, Williams VE, Park W (2009) Using molecular markers and w eld performance data to characterize the Pee Dee cotton germplasm resources. Euphytica 169:285–301. https://doi.org/10.1007/s10681-009-9917-4

    Article  CAS  Google Scholar 

  46. Tu JL, Zhang MJ, Wang XQ, Zhang XL, Lin ZX (2014) Genetic dissection of upland cotton (Gossypium hirsutum) cultivars developed in Hubei Province by mapped SSRs. Genet Mol Res 13(1):782–790. https://doi.org/10.4238/2014.January.31.4

    Article  CAS  PubMed  Google Scholar 

  47. Ge H, Liu Y, Jiang M, Zhang J, Hana H et al (2013) Analysis of genetic diversity and structure of eggplant populations (Solanum melongena L.) in China using simple sequence repeat markers. Sci Hortic 162:71–75. https://doi.org/10.1016/j.scienta.2013.08.004

    Article  CAS  Google Scholar 

  48. De Menezes IPP, Hoffmann LV, Barroso APV (2015) Genetic characterization of cotton landraces found in the Paraíba and Rio Grande do norte states. Crop Breed Appl Biotechnol 15:26–32. https://doi.org/10.1590/1984-70332015v15n1a4

    Article  CAS  Google Scholar 

  49. Noormohammadi Z, Rahnama A, Sheidai M (2013b) EST-SSR and SSR analyses of genetic diversity in diploid cotton genotypes from Iran. Nucleus 56(3):171–178. https://doi.org/10.1007/s13237-013-0094-4

    Article  Google Scholar 

  50. Yildiz E, Sümbül A, Yaman M, Nadeem MA, Say A, Baloch FS, Popescu GC (2022) Assessing the genetic diversity in hawthorn (Crataegus spp.) genotypes using morphological, phytochemical and molecular markers. Genetic Resources and Crop Evolution, pp 1–12

  51. Baloch FS, Guizado SJV, Altaf MT, Yüce I, Çilesiz Y, Bedir M, Gómez JCC (2022) Applicability of inter-primer binding site iPBS-retrotransposon marker system for the assessment of genetic diversity and population structure of peruvian rosewood (Aniba rosaeodora Ducke) germplasm. Mol Biol Rep 49(4):2553–2564

    Article  CAS  PubMed  Google Scholar 

  52. Alsaleh A, Bektas H, Baloch FS, Nadeem MA, Özkan H (2022) Turkish durum wheat conserved ex-situ and in situ unveils a new hotspot of unexplored genetic diversity. Crop Sci 62(3):1200–1212

    Article  CAS  Google Scholar 

  53. Bouchet S, Pot D, Deu M, Rami JF, Billot C, Perrier X et al (2012) Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers. PLoS ONE 7:3

    Article  Google Scholar 

  54. Nadeem MA (2021) Deciphering the genetic diversity and population structure of turkish bread wheat germplasm using iPBS-retrotransposons markers. Mol Biol Rep 48(10):6739–6748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Nazilli Cotton Research Institute and Prof. Dr. Mefhar Gültekin TEMİZ from the Faculty of Agriculture, University of Dicle (Diyarbakir, Turkey) for their assistance in supplying the cotton genetic materials used in this study.

Funding

Authors are grateful to Dicle University - Scientific Research Projects Coordinating Office for financial support (Project No: ZİRAAT.20.004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem Shehzad Baloch.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflicts of interests.

Consent to publish

All authors read the manuscript and showed their willingness to publish this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, N., Shimira, F., nadeem, M.A. et al. Exploring the genetic diversity and population structure of upland cotton germplasm by iPBS-retrotransposons markers. Mol Biol Rep 50, 4799–4811 (2023). https://doi.org/10.1007/s11033-023-08399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08399-0

Keywords

Navigation