Skip to main content
Log in

Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers

  • Research Article
  • Published:
Frontiers of Agriculture in China

Abstract

Seventy-one glandless cotton germplasm resources were firstly evaluated genetically by using nine agronomic traits, 33 simple sequence repeat (SSR) primers and ten amplified fragment length polymorphism (AFLP) primer combinations. Principal component analysis (PCA) of the agronomic traits showed that the first six principal components (PCs) explained a total of 86.352% of the phenotypic variation. A total of 329 alleles were amplified for 33 SSR primers, and 232 polymorphic bands in a total of 389 bands were obtained by using ten AFLP primer combinations. The average polymorphic information content (PIC) value was 0.80 and 0.18 for SSR primers and AFLP primer combinations, respectively. The DIST (average taxonomic distance) and DICE (Nei and Li’s pairwise distance) coefficients ranged from 0.373 to 3.164 and 0.786 to 0.948, respectively, for agronomic traits and SSR&AFLP data based on UPGMA analysis. This suggested that there was a higher diversity in the evaluated population for both agronomic traits and molecular markers. The Mantel’s test showed that the correlation between the dendrograms based on agronomic traits and SSR&AFLP data was non-significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdalla A M, Reddy OUK, El-Zik K M, Pepper A E (2001). Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet, 102: 222–229

    Article  CAS  Google Scholar 

  • Afifi A, Bary A A, Kamel S A, Heikal I (1966). Bahtim 110, a new strain of Egyptian cotton free from gossypol. Cot Grow Rev, 43: 112–120

    Google Scholar 

  • Beyene Y, Botha A M, Myburg A A (2005). A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. Afri J Biot, 4(7): 586–595

    CAS  Google Scholar 

  • Bottger G T, Sheehan E T, Lukefahr M J (1964). Relation of gossypol content of cotton plant to insect resistance. J Economic Entomo, 57(2): 283–285

    CAS  Google Scholar 

  • Cai Y F, Zhang H, Zeng Y, Mo J C, Bao J K, Miao C, Bai J, Yan F, Chen F (2004). An optimized gossypol high-performance liquid chromatography assay and its application in evaluation of different gland genotypes of cotton. J Biosci, 29: 67–71

    Article  PubMed  CAS  Google Scholar 

  • De Riek J, Calsyn E, Everaert I, van bockstaele E, De Loose M (2001). AFLP based alternatives for the assessment of distinctness uniformity and stability of sugar beet varieties. Theor Appl Genet, 103: 1254–1265

    Article  Google Scholar 

  • James Rohlf F (2000). NTSYSpc Numerical Taxonomy and Multivariate Analysis System Version 2.1 User Guide. Department of Ecology and Evolution State University of New York Stony Brook, NY, 11794–5245

  • Lee J A (1962). Genetical studies concerning the distribution of pigment glands in the cotyledons and leaves of upland cotton. Genetics, 47: 131–142

    PubMed  CAS  Google Scholar 

  • Liu S, Cantrell R G, McCarty J C Jr, Stewart J McD (2000)a. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci, 40: 1459–1469

    CAS  Google Scholar 

  • Liu S, Saha S, Stelly D, Burr B, Cantrell RG (2000)b. Chromosomal assignment of microsatellite loci in cotton. J Hered, 91: 326–332

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res, 27: 209–220

    PubMed  CAS  Google Scholar 

  • McMichael S C (1954). Glandless boll in upland cotton and its use in the study of natural crossing. J Agron, 46: 527–528

    Google Scholar 

  • McMichael S C (1959). Hopi cotton: a source of cottonseed free of gossypol pigments. J Agron, 51: 630

    Google Scholar 

  • McMichael S C (1960). Combined effects of the glandless genes gl2 and gl3 on pigment glands in the cotton plant. J Agron, 52: 385–386

    Google Scholar 

  • Murray J C (1965). A new locus for glanded atem in tetraploid cotton. J Heredity, 56: 42–46

    Google Scholar 

  • Nei M, Li W H (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci, 76: 5269–5273.

    Article  PubMed  CAS  Google Scholar 

  • Ni J J, Colowit P M, Mackill D J (2002). Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci, 42: 601–607

    CAS  Google Scholar 

  • Paterson AH, Brubaker C L, Wendel J F (1993). A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 11(2): 122–127

    Article  CAS  Google Scholar 

  • Rana M K, Singh V P, Bhat K V (2005). Assessment of genetic diversity in upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genet Res and Crop Evol, 52: 989–997

    Article  CAS  Google Scholar 

  • Reddy A S, Haisler RM, Yu Z H, Kohel R J (1997). AFLP mapping in cotton. Plant and Animal Genome V Conference, 80

  • Reinisch A R, Dong JM, Brubaker C, Stelly D, Wendel J, Patterson A H (1994). A detailed RFLP map of cotton, Gossypium hirsutum6Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics, 138: 829–847

    PubMed  CAS  Google Scholar 

  • Roux J B (1960). The selection of cotton plants without gossypol. C R Acad Agr Fr, 46: 613–622 (in French)

    Google Scholar 

  • Saha S, Karaca M, Jenkins J N, Zipf A E, Reddy U K, Kantety R V (2003). Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica, 130: 355–364

    Article  CAS  Google Scholar 

  • Schondelmaier J, Steinrucken G, Jung C (1996). Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.). Plant Breeding, 115: 231–237

    Article  CAS  Google Scholar 

  • Shappley Z W, Jenkins J N, Meredith W R, McCarty J C Jr (1998). An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet, 97: 756–761

    Article  CAS  Google Scholar 

  • Tara S C, Bhat K V, Bharadwaj C, Tiwari S P, Chaudhury V K (2006). AFLP analysis of genetic diversity in Indian soybean [Glycine max (L.) Merr.] varieties. Gene Res and Crop Evol, 53: 1069–1079

    Article  CAS  Google Scholar 

  • van Esbroeck G A, Bowman D T (1998). Cotton germplasm diversity and its importance to cultivar development. J Cot Sci, 2: 121–129

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Fijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 23(21): 4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vroh Bi I, Maquet A, Bandoin J P, Jardin P du, Jacquemin J M, Mergeai G (1999). Breeding for “low gossypol seed and high gossypol plants” in upland cotton. Analysis of tri-species hybrids and backcross progenies using AFLPs and RFLPs. Theor Appl Genet, 99: 1233–1244

    Article  Google Scholar 

  • Warburton M, Crossa J (2002). Data analysis in the CIMMYT applied biotechnology center for fingerprinting and genetic diversity studies. 2nd ed.www.cimmyt.org/english/docs/manual/protocols/dataAnalysis.pdf

  • Zhang J F, Lu Y, Adragna H, Hughs E (2005)a. Genetic improvement of new Mexico Acala cotton germplasm and their genetic diversity. Crop Sci, 45: 2363–2373

    Article  CAS  Google Scholar 

  • Zhang J F, Lu Y, Cantrell R G, Hughs E (2005)b. Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the southwestern USA. Crop Sci, 45: 1483–1490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Ma.

About this article

Cite this article

Li, Z., Wang, X., Zhang, Y. et al. Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers. Front. Agric. China 2, 245–252 (2008). https://doi.org/10.1007/s11703-008-0063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-008-0063-x

Keywords

Navigation