Skip to main content
Log in

Using molecular markers and field performance data to characterize the Pee Dee cotton germplasm resources

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Knowledge of genetic relationships in crop breeding programs provides valuable information that can be used by plant breeders as a parental line selection tool. In Upland cotton (Gossypium hirsutum L.), the Pee Dee germplasm program represents one of the most historically significant Upland cotton breeding programs and is known as a key source of fiber quality genes for commercial cultivars. The foundation of the Pee Dee germplasm is known to represent an array of genetic diversity involving the hybridization of G. hirsutum L., G. barbadense L., and triple hybrid strains (G. arboreum L. × G. thurberi Todaro × G. hirsutum L.). In this study, we characterized genetic relationships within the Pee Dee germplasm collection using molecular marker and field performance data. Molecular marker and field performance data showed the Pee Dee germplasm collection still maintains useful amounts of genetic diversity. The methods described provide plant breeders of cotton and other crops a strategy to develop a parental line selection tool based on genotypic and phenotypic information. Cotton breeders can directly use the information provided to select specific Pee Dee germplasm parental line combinations based on genotypic (molecular marker) and phenotypic (field performance) information rather than relying on pedigree and phenotypic information alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFIS:

Advanced fiber information system

HVI:

High volume instrument

UPGMA:

Unweighted pair group method with arithmetic average

SSR:

Simple sequence repeat

References

  • Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102:222–229. doi:10.1007/s001220051639

    Article  CAS  Google Scholar 

  • Beasley JO (1940) The origin of American Gossypium species. Am Nat 74:285–286. doi:10.1086/280895

    Article  Google Scholar 

  • Beer SC, Goffreda J, Phillips TD, Murphy JP, Sorrells ME (1993) Assessment of genetic variation in Avena sterilis using morphological traits, isozymes, and RFLPs. Crop Sci 33:1386–1393

    Article  CAS  Google Scholar 

  • Blenda A, Scheffler J, Scheffler B, Palmer M, Lacape J-M, Yu J, Jesudurai C, Jung S, Muthukumar S, Yellambalase P, Ficklin S, Staton M, Eshelman R, Ulloa M, Saha S, Burr B, Liu S, Zhang T, Fang D, Pepper A, Kumpatla S, Jacobs J, Tomkins J, Cantrell R, Main D (2006) CMD: a cotton microsatellite database resource for Gossypium genomics. BMC Genomics 7:132. doi:10.1186/1471-2164-7-132

    Article  PubMed  CAS  Google Scholar 

  • Bowman DT, Gutierrez OA (2003) Sources of fiber strength in the US upland cotton crop from 1980 to 2000. J Cotton Sci 7:164–169

    Google Scholar 

  • Bowman DT, Gutierrez OA, Percy RG, Calhoun DS, May OL (2006) Pedigrees of Upland and Pima cotton cultivars released between 1970 and 2005. Bull. 1017. Miss. Agric. and For. Exp. Stn, Mississippi State, MS

    Google Scholar 

  • Brown-Guedira GL, Thompson JA, Nelson RL, Warburton ML (2000) Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Sci 40:815–823

    Article  CAS  Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum, Malvaceae) using nuclear restriction fragment length polymorphism (RFLP). Am J Bot 81:1309–1326. doi:10.2307/2445407

    Article  Google Scholar 

  • Budak H, Pedraza F, Cregan PB, Baenziger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284–2290

    Article  CAS  Google Scholar 

  • Culp TW, Harrell DC (1973) Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L.). Crop Sci 13:686–689

    Google Scholar 

  • Culp TW, Harrell DC (1979a) Registration of SC-1 cotton. Crop Sci 19:410

    Google Scholar 

  • Culp TW, Harrell DC (1979b) Registration of five germplasm lines of cotton. Crop Sci 19:751

    Google Scholar 

  • Culp TW, Harrell DC (1979c) Registration of Pee Dee 4461 cotton germplasm. Crop Sci 19:752

    Google Scholar 

  • Culp TW, Harrell DC (1979d) Registration of Pee Dee 8619 germplasm line of cotton. Crop Sci 19:753

    Google Scholar 

  • Culp TW, Harrell DC (1980a) Registration of medium staple cotton germplasm. Crop Sci 20:290

    Article  Google Scholar 

  • Culp TW, Harrell DC (1980b) Registration of three germplasm lines of cotton. Crop Sci 20:288–289

    Google Scholar 

  • Culp TW, Harrell DC (1980c) Registration of extra-long staple cotton germplasm. Crop Sci 20:291

    Google Scholar 

  • Culp TW, Moore RF, Pitner JB (1985a) Registration of PD-1 cotton. Crop Sci 25:198

    Google Scholar 

  • Culp TW, Moore RF, Pitner JB (1985b) Registration of PD-2 cotton. Crop Sci 25:198–199

    Google Scholar 

  • Culp TW, Moore RF, Pitner JB (1985c) Registration of seven cotton germplasm lines. Crop Sci 25:201–202

    Article  Google Scholar 

  • Culp TW, Moore RF, Harvey LH, Pitner JB (1988) Registration of ‘PD-3’ cotton. Crop Sci 28:190

    Article  Google Scholar 

  • Culp TW, Green CC, Kittrell BU (1990a) Registration of seven germplasm lines of upland cotton with resistance to bollworm, tobacco budworm, and boll weevil. Crop Sci 30:236–237

    Google Scholar 

  • Culp TW, Green CC, Kittrell BU (1990b) Registration of twelve noncommercial germplasm lines of upland cotton with resistance to bollworm, tobacco budworm, and boll weevil. Crop Sci 30:236

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302. doi:10.2307/1932409

    Article  Google Scholar 

  • Fufa H, Baenziger P, Beecher BS, Dweikat I, Graybosch R, Eskridge K (2005) Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145:133–146. doi:10.1007/s10681-005-0626-3

    Article  CAS  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638. doi:10.1534/genetics.104.035642

    Article  PubMed  CAS  Google Scholar 

  • Green CC, Culp TW, Kittrell BU (1991a) Registration of four germplasm lines of upland cotton with early maturity and high fiber quality. Crop Sci 31:854

    Google Scholar 

  • Green CC, Culp TW, Kittrell BU (1991b) Registration of five germplasm lines of upland cotton with high yield potential and fiber quality. Crop Sci 31:854–855

    Google Scholar 

  • Green CC, Culp TW, Kittrell BU (1991c) Registration of two germplasm lines of upland cotton with highyield potential and fiber quality. Crop Sci 31:853

    Article  Google Scholar 

  • Gutierrez OA, Basu S, Saha S, Jenkins JN, Shoemaker DB, Cheatham CL, McCarty JC Jr (2002) Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci 42:1841–1847

    Article  Google Scholar 

  • Hanson WD (1959) The breakup of initial linkage blocks under selected mating systems. Genetics 44:857–868

    PubMed  CAS  Google Scholar 

  • Harrell DC, Culp TW (1979a) Registration of Pee Dee 0259 and Pee Dee 2165 germplasm lines of cotton. Crop Sci 19:418

    Google Scholar 

  • Harrell DC, Culp TW (1979b) Registration of Pee Dee 4381 germplasm line of cotton. Crop Sci 19:418

    Google Scholar 

  • Institute SAS (2008) The SAS system for Windows, Release 9.2. SAS Inst, Cary, NC

    Google Scholar 

  • Iqbal J, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L examined using DNA fingerprinting. Theor Appl Genet 103:547–554. doi:10.1007/PL00002908

    Article  CAS  Google Scholar 

  • Jiang C, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evol Int J Org Evol 54:798–814

    CAS  Google Scholar 

  • Kerr T (1960) The trispecies hybrid ancestry of high strength cottons. Proc Cotton Imp Conf 21:82

    Google Scholar 

  • Khan SA, Hussain D, Askari E, Stewart JM, Malik KA, Zafar Y (2000) Molecular phylogeny of Gossypium species by DNA fingerprinting. Theor Appl Genet 101:931–938. doi:10.1007/s001220051564

    Article  CAS  Google Scholar 

  • Labate JA, Lamkey KR, Mitchell SE, Kresovich S, Sullivan H, Smith JSC (2003) Molecular and historical aspects of corn belt Dent diversity. Crop Sci 43:80–91

    Article  Google Scholar 

  • Lacape J-M, Dessauw D, Rajab M, Noyer J-L, Hau B (2007) Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol Breed 19:45–58. doi:10.1007/s11032-006-9042-1

    Article  CAS  Google Scholar 

  • Liu S, Cantrell RG, McCarty JC Jr, Stewart JM (2000) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469

    CAS  Google Scholar 

  • Lu HJ, Myers GO (2002) Genetic relationships and discrimination of ten influential Upland cotton varieties using RAPD markers. Theor Appl Genet 105:325–331. doi:10.1007/s00122-002-0947-8

    Article  PubMed  CAS  Google Scholar 

  • May OL (1999) Registration of PD 94042 germplasm line of upland cotton with high yield and fiber maturity. Crop Sci 39:597–598

    Google Scholar 

  • May OL (2001) Registration of PD 94045 germplasm line of upland cotton. Crop Sci 41:279–280

    Google Scholar 

  • May OL, Howle DS (1997a) Registration of six germplasm lines of upland cotton: PD 93009, PD 93019, PD 93021, PD 93030, PD 93034, and PD 93057. Crop Sci 37:1030–1031

    Google Scholar 

  • May OL, Howle DS (1997b) Registration of three germplasm lines of upland cotton: PD 93007, PD 93043, and PD 93046. Crop Sci 37:1030

    Google Scholar 

  • May OL, Bowman DT, Calhoun DS (1995) Genetic diversity of U.S. upland cotton cultivars releases between 1980 and 1990. Crop Sci 35:1570–1574

    Google Scholar 

  • May OL, Howle DS, Green CC, Culp TW (1996) Registration of PD-3-14 germplasm line of upland cotton with high yield and fiber quality. Crop Sci 36:1718

    Article  Google Scholar 

  • Meredith WR Jr (2005) Minimum number of genes controlling cotton fiber strength in a backcross population. Crop Sci 45:1114–1119. doi:10.2135/cropsci2003.0425

    Article  Google Scholar 

  • Milla SR, Isleilb TR, Stalker HT (2005) Taxonomic relationships among Arachis sect Arachis species as revealed by AFLP markers. Genome 48:1–11. doi:10.1139/g04-089

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci 43:1235–1248

    Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273. doi:10.1073/pnas.76.10.5269

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T-B, Giband M, Brottier P, Risterucci A-M, Lacape J-M (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175. doi:10.1007/s00122-004-1612-1

    Article  PubMed  CAS  Google Scholar 

  • Pillay M, Myers GO (1999) Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Sci 39:1881–1886

    Article  CAS  Google Scholar 

  • Rahman M, Hussain D, Zafar Y (2002) Estimation of genetic divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology. Crop Sci 42:2137–2144

    Article  CAS  Google Scholar 

  • Rohlf FJ (2005) NTSYSpc, numerical taxonomy and multivariate analysis system, version 2.2. Applied Biostatistics Inc, New York

    Google Scholar 

  • Smith CW, Cantrell RG, Moser HS, Oakley SR (1999) History of cultivar development in the United States. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production. John Wiley & Sons Inc, New York, pp 99–171

    Google Scholar 

  • Tatineni V, Cantrell RG, Davis DD (1996) Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci 36:186–192

    Google Scholar 

  • Van Becelaere G, Lubbers EL, Paterson AH, Chee PW (2005) Pedigree- vs DNA marker-based genetic similarity estimates in cotton. Crop Sci 45:2281–2287. doi:10.2135/cropsci2004.0715

    Article  CAS  Google Scholar 

  • Van Esbroeck G, Bowman DT, Calhoun DS, May OL (1998) Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Sci 38:33–37

    Google Scholar 

  • Van Esbroeck G, Bowman D, May O, Calhoun D (1999) Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Sci 39:323–328

    Google Scholar 

  • Wang K, Song X, Han Z, Guo W, Yu J, Sun J, Pan J, Kohel R, Zhang T (2006) Complete assignment of the chromosomes of Gossypium hirsutum L by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80. doi:10.1007/s00122-006-0273-7

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot 79:1291–1310. doi:10.2307/2445058

    Article  Google Scholar 

  • Zhang J, Lu Y, Cantrell RG, Hughs E (2005a) Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the southwestern USA. Crop Sci 45:1483–1490. doi:10.2135/cropsci2004.0581

    Article  CAS  Google Scholar 

  • Zhang JF, Lu Y, Adragna H, Hughs E (2005b) Genetic improvement of New Mexico Acala cotton germplasm and their genetic diversity. Crop Sci 45:2363–2373. doi:10.2135/cropsci2005.0140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by funding from CRIS No. 6657-21000-005-00D of the U.S. Department of Agriculture and a grant from Cotton Incorporated. Special thanks to Bobby Fisher and summer students for technical assistance. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, B.T., Williams, V.E. & Park, W. Using molecular markers and field performance data to characterize the Pee Dee cotton germplasm resources. Euphytica 169, 285–301 (2009). https://doi.org/10.1007/s10681-009-9917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-9917-4

Keywords

Navigation