Skip to main content
Log in

Overexpression of Ran gene from Lepidium latifolium L. (LlaRan) renders transgenic tobacco plants hypersensitive to cold stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ran is a multifunctional small GTPase involved in important cellular activities like nucleocytoplasmic transport, mitotic spindle assembly, nuclear envelope formation, etc., but is also known to be differentially expressed in response to abiotic stress, particularly low temperature. We have over-expressed Lepidium latifolium (Fam. Brassicaceae) Ran gene in tobacco to study the response of the plants to cold stress (24 h; 4 °C). Transformation of the tobacco plants was verified using PCR targeting Ran gene and co-transformed selectable marker gene nptII. Segregation in Mendelian ratios was validated in five transgenic lines by germination of T1 and T2 seeds on moist filter papers containing 150 mg/l kanamycin. Higher levels of electrolyte leakage and lipid peroxidation pointed towards hypersensitivity of plants. Similarly, lesser proline accumulation compared to wild types also indicated susceptibility of plants to death under chilling conditions. Specific activity of antioxidant enzymes superoxide dismutase and glutathione reductase was also measured under stressed and control conditions. A variation was observed across the different lines, and four out of five lines showed lesser specific activity compared to wild type plants, thus indicating reduced capability of scavenging free radicals. In totality, a strong evidence on induced hypersensitivity to cold stress has been collected which may further be helpful in designing appropriate strategies for engineering crop plants for survival under cold stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao Q, Leung S, Corbett AH, Meier I (2006) Identification and characterization of the Arabidopsis orthologs of nuclear transport factor 2, the nuclear import factor of ran. Plant Physiol 140(3):869–878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ciciarello M, Mangiacasale R, Lavia P (2007) Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci 64(15):1891–1914

    Article  CAS  PubMed  Google Scholar 

  3. Zang A, Xu X, Neill S, Cai W (2010) Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J Exp Bot 61(3):777–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ach RA, Gruissem W (1994) A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci 91(13):5863–5867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Haizel T, Merkle T, Pay A, Fejes E, Nagy F (1997) Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant J 11(1):93–103

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K (2006) Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Plant Physiol 140(1):91–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sinha VB (2011) Studies on freezing stress downregulated genes from Lepidium. Kumaun University, Nainital

    Google Scholar 

  8. Lee Y, Kim M-H, Kim S-K, Kim S-H (2008) Phytochrome-mediated differential gene expression of plant Ran/TC4 small G-proteins. Planta 228(1):215–224

    Article  CAS  PubMed  Google Scholar 

  9. Cho H-K, Park J-A, Pai H-S (2008) Physiological function of NbRanBP1 in Nicotiana benthamiana. Mol Cells 26(3):270

    CAS  PubMed  Google Scholar 

  10. Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112(2):152–166

    Article  CAS  PubMed  Google Scholar 

  11. Mosammaparast N, Pemberton LF (2004) Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14(10):547–556

    Article  CAS  PubMed  Google Scholar 

  12. Harel A, Forbes DJ (2004) Importin beta: conducting a much larger cellular symphony. Mol Cell 16(3):319–330

    CAS  PubMed  Google Scholar 

  13. Chinnusamy V, Gong Z, Zhu J-K (2008) Nuclear RNA export and its importance in abiotic stress responses of plants. In: Reddy ASN, Golovkin MV (eds) Nuclear pre-mRNA processing in plants series: current topics in microbiology and immunology, Vol 326, pp 235–255

  14. Aslam M, Sinha VB, Singh RK, Anandhan S, Pande V, Ahmed Z (2010) Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiol Plant 32(1):205–210

    Article  CAS  Google Scholar 

  15. Aslam M, Grover A, Sinha VB, Fakher B, Pande V, Yadav PV, Gupta SM, Anandhan S, Ahmed Z (2012) Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Mol Biol Rep 39(10):9629–9638

    Article  CAS  PubMed  Google Scholar 

  16. Sinha VB, Grover A, Ahmed Z, Pande V (2014) Isolation and functional characterization of DNA damage repair protein from Lepidium latifolium L. C R Biol 337(5):302–310

    Article  PubMed  Google Scholar 

  17. Sinha VB, Grover A, Aslam M, Pande V, Ahmed Z (2014) Isolation and characterization of Ras related GTP binding protein (Ran) from Lepidium latifolium L. reveals its potential role in regulating abiotic stress tolerance. Acta Physiol Plant

  18. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  19. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15

    Google Scholar 

  20. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9

    Article  CAS  Google Scholar 

  21. Wang Y, Qiu L, Dai C, Wang J, Luo J, Zhang F, Ma J (2008) Expression of insect (Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco. Plant Cell Rep 27(8):1349–1358

  22. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  24. Roy R, Purty RS, Agrawal V, Gupta SC (2006) Transformation of tomato cultivar ‘Pusa Ruby’ with bspA gene from Populus tremula for drought tolerance. Plant Cell Tissue Organ Cult 84(1):56–68

    Article  Google Scholar 

  25. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biol Med 9(6):515–540

    Article  CAS  Google Scholar 

  26. Singh S, Rathore M, Goyary D, Singh RK, Anandhan S, Sharma DK, Ahmed Z (2011) Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep 30(6):1019–1028

    Article  CAS  PubMed  Google Scholar 

  27. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438

    Article  CAS  PubMed  Google Scholar 

  28. Yadeghari LZ, Heidari R, Carapetian J (2008) The influence of cold acclimation on proline, malondialdehyde (MDA), Total protein and pigments contents in soybean (Glycine max) seedlings. Res J Biol Sci 3(1):74–79

    Google Scholar 

  29. Strand Å, Foyer C, Gustafsson P, Gardeström P, Hurry V (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant, Cell Environ 26(4):523–535

    Article  CAS  Google Scholar 

  30. Hare P, Cress W (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21(2):79–102

    Article  CAS  Google Scholar 

  31. Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54(392):2553–2562

    Article  CAS  PubMed  Google Scholar 

  32. Baek K-H, Skinner DZ, Ling P, Chen X (2006) Molecular structure and organization of the wheat genomic manganese superoxide dismutase gene. Genome 49(3):209–218

    Article  CAS  PubMed  Google Scholar 

  33. Rahimizadeh M, Habibi D, Madani H, Mohammadi G, Mehraban A, Sabet A (2007) The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus L.) under drought stress. Helia 30(47):167–173

    Article  Google Scholar 

  34. Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103(2):267–277

Download references

Acknowledgments

Vimlendu Bhushan Sinha and Sadhana Singh thank Defence Research and Development Organization (DRDO), India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimlendu Bhushan Sinha.

Additional information

Vimlendu Bhushan Sinha and Atul Grover have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, V.B., Grover, A., Singh, S. et al. Overexpression of Ran gene from Lepidium latifolium L. (LlaRan) renders transgenic tobacco plants hypersensitive to cold stress. Mol Biol Rep 41, 5989–5996 (2014). https://doi.org/10.1007/s11033-014-3476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3476-z

Keywords

Navigation