Skip to main content
Log in

Isolation and characterization of cold responsive NAC gene from Lepidium latifolium

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cold stress is one of the major limiting factor in crop productivity. Plants growing in colder regions acclimatize to severe conditions owing to the presence of ‘cold stress tolerant genes’. Isolation and functional characterization of these genes are important before their exploitation in modern agricultural practices. Here, we have cloned full length NAC gene (1,388 bp) from Lepidium latifolium (LlaNAC). This gene belongs to NAP sub-group which also includes ANAC056 of Arabidopsis thaliana, nearest relative of LlaNAC. Upstream analysis and microarray data analysis of ANAC056 suggested that LlaNAC might also be ABA-regulated. However, quantitative transcript expression analysis revealed that LlaNAC transcript upregulated by cold stress and downregulated in response to varying concentrations of abscisic acid, salicylic acid, calcium chloride and ethylene. There is also a possibility that the gene may be getting regulated by a pathway whose components are still unknown. Any further investigations to understand the mechanism of regulation of LlaNAC gene expression are likely to find immense importance in plant biotechnology and crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599. doi:10.1146/annurev.arplant.50.1.571

    Article  CAS  Google Scholar 

  2. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690. doi:10.1105/tpc.003483

    Article  PubMed  CAS  Google Scholar 

  3. Lee BH, Henderson DA et al (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175. doi:10.1105/tpc.105.035568

    Article  PubMed  CAS  Google Scholar 

  4. Hewezi T, Leger M et al (2006) Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J Exp Bot 57(12):3109–3122. doi:10.1093/jxb/erl080

    Article  PubMed  CAS  Google Scholar 

  5. Nakashima K, Tran LSP et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630. doi:10.1111/j.1365-313X.2007.03168.x

    Article  PubMed  CAS  Google Scholar 

  6. Aslam M, Sinha VB et al (2010) Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiol Plant 32(1):205–210. doi:10.1007/s11738-009-0382-4

    Article  CAS  Google Scholar 

  7. Monroy AF, Dryanova A et al (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64(4):409–423. doi:10.1007/s11103-007-9161-z

    Article  PubMed  CAS  Google Scholar 

  8. Kim SG, Kim SY et al (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226(3):647–654. doi:10.1007/s00425-007-0513-3

    Article  PubMed  CAS  Google Scholar 

  9. Hu HH, You J et al (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67(1–2):169–181. doi:10.1007/s11103-008-9309-5

    Article  PubMed  CAS  Google Scholar 

  10. Ooka H, Satoh K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247. doi:10.1093/dnares/10.6.239

    Article  PubMed  CAS  Google Scholar 

  11. Xiong YQ, Liu TY et al (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59(1):191–203. doi:10.1007/s11103-005-6503-6

    Article  PubMed  CAS  Google Scholar 

  12. Kim SY, Kim SG et al (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35(1):203–213. doi:10.1093/nar/gkl1068

    Article  PubMed  CAS  Google Scholar 

  13. Fujita M, Fujita Y et al (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876. doi:10.1111/j.1365-313X.2004.02171.x

    Article  PubMed  CAS  Google Scholar 

  14. Tran LSP, Nakashima K et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498. doi:10.1105/tpc.104.022699

    Article  PubMed  CAS  Google Scholar 

  15. Uauy C, Distelfeld A et al (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301. doi:10.1126/science.1133649

    Article  PubMed  CAS  Google Scholar 

  16. Hao YJ, Wei W, Song QX et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313. doi:10.1111/j.1365-313X.2011.04687.x

    Article  PubMed  CAS  Google Scholar 

  17. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols in the series methods in molecular biology. Humana, Totowa, pp 365–386

    Google Scholar 

  18. Guo A, He K, Liu D, Bai S, Gu S, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21(10):2568–2569

    Article  PubMed  CAS  Google Scholar 

  19. Riano-Pachon DM, Ruzicic S et al (2007) PlnTFDB: an integrative plant transcription factor database. Bmc Bioinform 8. doi:10.1186/1471-2105-8-42

  20. Altschul SF, Madden TL et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  21. Stormo GD (2000) Gene-Finding Approaches for Eukaryotes. Genome Res 10:394–397

    Article  PubMed  CAS  Google Scholar 

  22. Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10(4):516–522. doi:10.1101/gr.10.4.516

    Article  PubMed  CAS  Google Scholar 

  23. Finn RD, Mistry J et al (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251. doi:10.1093/nar/gkj149

    Article  PubMed  CAS  Google Scholar 

  24. de Castro E, Sigrist CJA et al (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365. doi:10.1093/nar/gkl124

    Article  PubMed  Google Scholar 

  25. Quevillon E, Silventoinen V et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120. doi:10.1093/nar/gki442

    Article  PubMed  CAS  Google Scholar 

  26. Thompson JD, Higgins DG et al (1994) CLUSTAL-W—Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  27. Tamura K, Dudley J et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  28. Bailey TL, Williams N et al (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373. doi:10.1093/nar/gkl198

    Article  PubMed  CAS  Google Scholar 

  29. Higo K, Ugawa Y et al (1999) Plant cis-acting regulatory DNA elements (PLACE) database 1999. Nucleic Acids Res 27(1):297–300. doi:10.1093/nar/27.1.297

    Article  PubMed  CAS  Google Scholar 

  30. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  31. Sambrook J, Russell DW (2008) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  32. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  PubMed  CAS  Google Scholar 

  33. Kikuchi K, Ueguchi-Tanaka M et al (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262(6):1047–1051. doi:10.1007/pl00008647

    Article  PubMed  CAS  Google Scholar 

  34. He XJ, Mu RL et al (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916. doi:10.1111/j.1365-313X.2005.02575.x

    Article  PubMed  CAS  Google Scholar 

  35. Souer E, van Houwelingen A et al (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170. doi:10.1016/s0092-8674(00)81093-4

    Article  PubMed  CAS  Google Scholar 

  36. Xie Q, Frugis G et al (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Gene Dev 14(23):3024–3036. doi:10.1101/gad.852200

    Article  PubMed  CAS  Google Scholar 

  37. Duval M, Hsieh TF et al (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50(2):237–248. doi:10.1023/a:1016028530943

    Article  PubMed  CAS  Google Scholar 

  38. Greve K, La Cour T et al (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: rING-H2 molecular specificity and cellular localization. Biochem J 371:97–108. doi:10.1042/bj20021123

    Article  PubMed  CAS  Google Scholar 

  39. Narusaka Y, Nakashima K et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34(2):137–148. doi:10.1046/j.1365-313X.2003.01708.x

    Article  PubMed  CAS  Google Scholar 

  40. Finkelstein RR, Gampala SSL et al (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45. doi:10.1105/tpc.010441

    PubMed  CAS  Google Scholar 

  41. Ohnishi T, Sugahara S et al (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80(2):135–139. doi:10.1266/ggs.80.135

    Article  PubMed  CAS  Google Scholar 

  42. Seki M, Narusaka M et al (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13(1):61–72. doi:10.2307/3871153

    PubMed  CAS  Google Scholar 

  43. Xiong LM, Schumaker KS et al (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183. doi:10.1105/tpc.000596

    Article  PubMed  CAS  Google Scholar 

  44. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445. doi:10.1016/s1369-5266(03)00085-2

    Article  PubMed  CAS  Google Scholar 

  45. Han Q, Zhang J et al (2012) Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Mol Biol Rep 39(2):1713–1720. doi:10.1007/s11033-011-0911-2

    Article  PubMed  CAS  Google Scholar 

  46. Wu A, Allu AD et al (2012) JUNGBRUNNEN1, a reactive oxygen species responsive NAC transcription factor, regulates longevity in arabidopsis. Plant Cell. doi:10.1105/tpc.111.090894

Download references

Acknowledgments

Authors are thankful to DRDO HQ for funding the research work and providing fellowship to Mohammad Aslam and Vimlendu B Sinha. Authors also thank Defence Institute of High Altitude Research (DIHAR), Leh for their help in collection of plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Aslam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslam, M., Grover, A., Sinha, V.B. et al. Isolation and characterization of cold responsive NAC gene from Lepidium latifolium . Mol Biol Rep 39, 9629–9638 (2012). https://doi.org/10.1007/s11033-012-1828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1828-0

Keywords

Navigation