Skip to main content
Log in

Overexpression of NAC gene from Lepidium latifolium L. enhances biomass, shortens life cycle and induces cold stress tolerance in tobacco: potential for engineering fourth generation biofuel crops

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We report elevated biomass and altered growth characteristics of tobacco plants up on transformation with a NAC (NAM, ATAF1/2,CUC2) gene (GenBank Accession FJ754254) isolated from Lepidium latifolium L. (LlaNAC). Transgenic plants showed significant differences in fresh weight, midrib length of longest leaf, leaf area, height of the plant, root and shoot weights, etc. during vegetative phase. On 100th day after sowing (DAS), plants of transgenic lines were 2–3 times taller than the wild type plants, though no significant difference was recorded in moisture contents of any of the plant tissues. Over-expression of NAC gene up to 2,000 fold was recorded in leaves of transgenic plants on 100th DAS. Interestingly, transgenic plants showed significantly shortened (P(t) = 0.02–0.04) life cycle, as they showed a completely altered growth behaviour. Transgenic plants entered reproductive phase earlier by 60 days, with lines NC2 and NC7b entering first, followed by line NC10. However, the time period spent in the reproductive phase by the plant was nearly twice in case of transgenic lines NC2, NC7b and NC10, as compared to the wild type plants. Despite that, these lines completed their life cycle in 45–60 days lesser than the time taken by wild-type tobacco plants. No difference was recorded in fruit and seed yield of transgenic or wild type plants. To the best of our knowledge, this is the first report on over-expression of NAC gene causing altered growth and biomass patterns. We expect this study to become an important reference towards future engineering of plants for fuel and fodder purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  PubMed  CAS  Google Scholar 

  2. Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667

    Article  CAS  Google Scholar 

  3. Demura T, Ye Z-H (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299–304

    Article  PubMed  Google Scholar 

  4. Grover A, Patade VY, Kumari M, Gupta SM, Arif M, Ahmed Z (2013) Omics approaches in biofuel production for a green environment. In: Barh D, Zambare V, Azevedo V (eds) OMICS: applications in biomedical, agricultural, and environmental sciences. CRC Press, Taylor and Francis Group, Boca Raton, pp 623–636

    Chapter  Google Scholar 

  5. Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313

    Article  CAS  Google Scholar 

  6. Shen H, Yin Y, Chen F, Xu Y, Dixon RA (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Res 2:217–232

    Article  Google Scholar 

  7. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  PubMed  CAS  Google Scholar 

  8. He X-J, Mu R-L, Cao W-H, Zhang Z-G, Zhang J-S, Chen S-Y (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signalling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  PubMed  CAS  Google Scholar 

  9. Shan W, Kuang J-F, Chen L, Xie H et al (2012) Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot 63:5171–5187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  PubMed  CAS  Google Scholar 

  11. Ooka H, Satoh K, Doi K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  PubMed  CAS  Google Scholar 

  12. Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue specific or stress responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563

    Article  PubMed  CAS  Google Scholar 

  13. Tran L-SP, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen T (2009) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 281:647–664

    Article  PubMed  CAS  Google Scholar 

  14. Ma J, Wang F, Li M-Y, Jiang Q, Tan G-F, Xiong A-S (2014) Genome wide analysis of the NAC transcription factor family in Chinese cabbage to elucidate responses to temperature stress. Sci Hortic 165:82–90

    Article  CAS  Google Scholar 

  15. Puranik S, Sahu PP, Mandal SN, Suresh BV, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8:e64594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. Mol Biotechnol 49:138–150

    Article  PubMed  CAS  Google Scholar 

  17. Puranik S, Kumar K, Srivastava PS, Prasad M (2011) Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein. Plant Signal Behav 6:10

    Article  Google Scholar 

  18. Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Genet Genomics 262:1047–1051

    Article  CAS  Google Scholar 

  19. Kim S-Y, Kim S-G, Kim Y-S, Seo PJ, Bae M, Yoon H-K, Park C-M (2007) Exploring membrance-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35:203–213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Hao Y-J, Wei W, Song Q-X et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  PubMed  CAS  Google Scholar 

  21. Yamaguchi M, Demura T (2010) Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol 27:237–242

    Article  CAS  Google Scholar 

  22. Zhong R, Lee C, Ye Z-H (2010) Functional characterization of poplar wood associated NAC domain transcription factors. Plant Physiol 152:1044–1055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Zhong R, Ye Z-H (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53:368–380

    Article  PubMed  CAS  Google Scholar 

  24. Aslam M, Grover A, Sinha VB, Fakher B, Pande V, Patade PV, Gupta SM, Anandhan S, Ahmed Z (2012) Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Mol Biol Rep 39:9629–9638

    Article  PubMed  CAS  Google Scholar 

  25. Shamimuzzaman M, Vodkin L (2013) Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq. BMC Genomics 14:477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11:173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Valdivia ER, Herrera MT, Gianzo C, Fidalgo J, Revilla G, Zarra I, Sampedro J (2013) Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. J Exp Bot 64:1333–1343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Torbert KA, Rines HW, Somers DA (1995) Use of paromomycin as a selective agent for oat transformation. Plant Cell Rep 14:635–640

    Article  PubMed  CAS  Google Scholar 

  29. Patade VY, Khatri D, Kumar K, Grover A, Kumari M, Gupta SM, Kumar D, Nasim M (2014) RNAi mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.). Mol Biol Rep 41:4305–4312

    Article  PubMed  CAS  Google Scholar 

  30. Pandey SK, Singh H (2011) A simple, cost-effective method for leaf area estimation. J Bot 2011:658240

    Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using a real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  32. Zimmermann P, Laule O, Schmitz J, Hruz T, Bleuler S, Gruissem W (2008) Genevestigator transcriptome MetaAnalysis and biomarker search using rice and barley gene expression databases. Mol Plant 5:851–857

    Article  Google Scholar 

  33. Olsen AN, Ernst HA, Lo LL, Skriver K (2005) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci 169:785–797

    Article  CAS  Google Scholar 

  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  35. Rhee SY, Beavis W, Beradini TZ et al (2003) The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Article  PubMed  CAS  Google Scholar 

  36. Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:L619832

    Article  Google Scholar 

  37. Hruz T, Laule O, Szabo G, Wessendrop F, Bleuler S, Oertle L, Widmayer V, Gruissem W, Zimmermann P (2008) Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

    Google Scholar 

  38. Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50:1035–1048

    Article  PubMed  CAS  Google Scholar 

  39. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Baek I-J, Seo D-S, Yon J-M et al (2007) Tissue expression and cellular localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA in male mice. J Mol Histol 38:237–244

    Article  PubMed  CAS  Google Scholar 

  41. Rahimizadeh M, Habibi D, Madani H, Mohammadi GN, Mehraban A, Sabet AM (2007) The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus L.) under drought stress. Helia 30:167–173

    Article  Google Scholar 

  42. Mitsuda N, Ohme-Takagi M (2008) NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J 56:768–778

    Article  PubMed  CAS  Google Scholar 

  43. Bennett T, van den Toom A, Sanchez-Perez GF, Campilho A, Willemsen V, Snel B, Scheres B (2010) SOMBERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis. Plant Cell 22:640–654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32

    Article  PubMed  Google Scholar 

  45. Grover A, Patade VY, Kumari M, Gupta SM, Arif M, Ahmed Z (2013) Bioenergy crops enter into the omics era. In: Barh D (ed) Omics applications in crop science. CRC Press, Taylor & Francis LLC, pp 549–561

Download references

Acknowledgments

Authors thank Dr. Gyan Singh Shekhawat, JN Vyas University, Jodhpur for helpful discussion. Sadhana Singh and Pankaj Pandey acknowledge fellowship received from Defence Research and Development Organization (DRDO). The plant material was developed at DIBER, India by Dr. Mohammad Aslam, presently at Texas A&M University, USA.

Conflict of interest

Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Grover.

Additional information

Atul Grover and Sadhana Singh contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 59 kb)

Supplementary material 2 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grover, A., Singh, S., Pandey, P. et al. Overexpression of NAC gene from Lepidium latifolium L. enhances biomass, shortens life cycle and induces cold stress tolerance in tobacco: potential for engineering fourth generation biofuel crops. Mol Biol Rep 41, 7479–7489 (2014). https://doi.org/10.1007/s11033-014-3638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3638-z

Keywords

Navigation