Skip to main content

Advertisement

Log in

Review: role of carbon sources for in vitro plant growth and development

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In vitro plant cells, tissues and organ cultures are not fully autotrophic establishing a need for carbohydrates in culture media to maintain the osmotic potential, as well as to serve as energy and carbon sources for developmental processes including shoot proliferation, root induction as well as emission, embryogenesis and organogenesis, which are highly energy demanding developmental processes in plant biology. A variety of carbon sources (both reducing and non-reducing) are used in culture media depending upon genotypes and specific stages of growth. However, sucrose is most widely used as a major transport-sugar in the phloem sap of many plants. In micropropagation systems, morphogenetic potential of plant tissues can greatly be manipulated by varying type and concentration of carbon sources. The present article reviews the past and current findings on carbon sources and their sustainable utilization for in vitro plant tissue culture to achieve better growth rate and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. George EF, Hall MA, Klerk GJD (2008) The components of plant tissue culture media I: macro-and micro-nutrients. Plant propagation by tissue culture pp 65–113

  2. Kumar U (2001) Methods in Plant Tissue Culture. APH publishing corporation, New Delhi

    Google Scholar 

  3. Kumar S, Singh MP (2009) Plant Tissue Culture. APH Publishing Corporation, New Delhi

    Google Scholar 

  4. Fotopoulos S, Sotiropoulos T (2004) In vitro propagation of the peach rootstock: the effect of different carbon sources and types of sealing material on rooting. Biol Plant 48(4):629–631

    Article  Google Scholar 

  5. Sotiropoulos T et al (2006) Sucrose and Sorbitol effects on shoot growth and proliferation in vitro, nutritional status and peroxidase and catalase isoenzymes of M 9 and MM 106 apple (Malus domestica Borkh.) rootstocks. Eur J Hortic Sci 71(3):114–119

    CAS  Google Scholar 

  6. Du Toit E, Robbertse P, Niederwieser J (2004) Plant carbohydrate partitioning of Lachenalia cv Ronina during bulb production. Sci Hortic 102(4):433–440

    Article  CAS  Google Scholar 

  7. Karami O et al (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110(4):340–344

    Article  CAS  Google Scholar 

  8. Koch K (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Biol 47(1):509–540

    Article  CAS  Google Scholar 

  9. Calamar A, De Klerk GJ (2002) Effect of sucrose on adventitious root regeneration in apple. Plant Cell, Tissue Organ Cult 70(2):207–212

    Article  CAS  Google Scholar 

  10. Jain N, Babbar S (2003) Effect of carbon source on the shoot proliferation potential of epicotyl explants of Syzygium cuminii. Biol Plant 47(1):133–136

    Article  Google Scholar 

  11. Thorpe TA (1980) Organogenesis in vitro: structural, physiological and biochemical aspects. In: Vasil KI (ed) International review of cytology. Perspectives in plant cell and tissue culture, Acedemic Press, New York, pp 71–111

  12. Thomson M, Thorpe TA (1987) Metabolic and non metabolic roles of carbohydrates. In: Bong JM, Durzan DJ (eds) Cell and tissue culture in forestry. Martinus Nijhoff Publisher, Dardrecht, pp 89–112

  13. Ahmad T et al (2007) Comparison of sucrose and sorbitol as main carbon energy source in morphogenesis of peach rootstock GF-677. Pak J Bot 39(4):1264–1275

    Google Scholar 

  14. Fuentes SRL et al (2000) The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell, Tissue Organ Cult 60(1):5–13

    Article  Google Scholar 

  15. Blanc G et al (1999) Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell, Tissue Organ Cult 59(2):103–112

    Article  CAS  Google Scholar 

  16. Moing A et al (1992) Carbon fluxes in mature peach leaves. Plant Physiol 100(4):1878–1884

    Article  PubMed  CAS  Google Scholar 

  17. Swedlund B, Locy RD (1993) Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiol 103(4):1339–1346

    PubMed  CAS  Google Scholar 

  18. Smith MM (1973) Stone B [beta]-Glucan synthesis by cell-free extracts from Lolium multiflorum endosperm. Biochimica et Biophysica Acta (BBA)-General Subjects. 313(1):72–94

    Google Scholar 

  19. Yatazawa M, Furuhashi K, Shimizu M (1967) Growth of callus tissue from rice-root in vitro. Plant Cell Physiol 8(3):363

    CAS  Google Scholar 

  20. Garcia J et al (2002) Influence of carbon source and concentration on the in vitro development of olive zygotic embryos and explants raised from them. Plant Cell, Tissue Organ Cult 69(1):95–100

    Article  CAS  Google Scholar 

  21. Marchal J, Sens I, Teisson C (1992) Influence des sucres et de facteurs bioclimatiques sur la culture in vitro du bananier. Fruits 47(1):17–24

    CAS  Google Scholar 

  22. Nadel BL, Altman A, Ziv M (1989) Regulation of somatic embryogenesis in celery cell suspensions. Plant Cell, Tissue Organ Cult 18(2):181–189

    Article  CAS  Google Scholar 

  23. Pua EC, Chong C (1984) Requirement for sorbitol (D-glucitol) as carbon source for in vitro propagation of Malus robusta No. 5. Can J Bot 62(7):1545–1549

    Article  CAS  Google Scholar 

  24. Vu JCV, Niedz RP, Yelenosky G (1993) Glycerol stimulation of chlorophyll synthesis, embryogenesis, and carboxylation and sucrose metabolism enzymes in nucellar callus of ‘Hamlin’sweet orange. Plant Cell, Tissue Organ Cult 33(1):75–80

    Article  CAS  Google Scholar 

  25. Demo P et al (2008) Table sugar as an alternative low cost medium component for in vitro micro-propagation of potato (Solanum tuberosum L.). Afr J Biotechnol 7(15):2578–2584

    CAS  Google Scholar 

  26. Walford SN (1996) Composition of sugarcane juice. Proc S Afr Sugar Technol Ass 70:265–266

    Google Scholar 

  27. Buah J et al (2011) Sugarcane juice as an alternative carbon source for in vitro culture of plantains and bananas. Am J Food Technol 6(8):685–694

    Article  CAS  Google Scholar 

  28. Prakash S, Hooque MI, Brinks T (2002) Culture media and containers in low cost options for tissue culture technology in developing countries. in Proceedings of a technical meeting, FAO/IAEA Division of nuclear techniques in food and agriculture. Vienna

  29. Alkhateeb A (2008) Comparison effects of sucrose and date palm syrup on somatic embryogenesis of date palm (Phoenix dactylifera L.). Am J Biotechnol Biochem 4(1):19–23

    Article  CAS  Google Scholar 

  30. Al-Khateeb A (2006) Role of cytokinin and auxin on the multiplication stage of date palm (Phoenix dactylifera L.) cv. Sukry. Biotechnology 5(3):349–352

    Article  CAS  Google Scholar 

  31. Kozai T et al (1991) Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell, Tissue Organ Cult 25(2):107–115

    Google Scholar 

  32. Yaseen M et al (2009) In vitro shoot proliferation competence of apple rootstocks M. 9 and M. 26 on different carbon sources. Pak J Bot 41(4):1781–1795

    CAS  Google Scholar 

  33. Chen J, Ziv M (2003) Carbohydrate, metabolic, and osmotic changes in scaled-up liquid cultures of Narcissus leaves. In Vitro Cell & Dev Biol-Plant 39(6):645–650

    Article  CAS  Google Scholar 

  34. Haque MS, Wada T, Hattori K (2003) Effects of Sucrose, mannitol and KH2P04 on proliferation of root tip derived shoots and subsequent liulblet formation in garlic. Asian J Plant Sci 2(12):903–908

    Article  Google Scholar 

  35. de Paiva Neto VB, Otoni WC (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci Hortic 97(3–4):193–202

    Article  CAS  Google Scholar 

  36. Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple: a review. Biotechnol Adv 28(4):462–488

    Article  PubMed  CAS  Google Scholar 

  37. Pati PK et al (2006) In vitro propagation of rose: a review. Biotechnol Adv 24(1):94–114

    Article  PubMed  CAS  Google Scholar 

  38. Skrebsky EC, Nicoloso FT, Ferrao GE (2004) Sacarose e período de cultivo in vitro na aclimatização ex vitro de ginseng brasileiro (Pfaffia glomerata Spreng. Pedersen). Ciência Rural 34(5):1471–1477

    Google Scholar 

  39. Kadota M, Imizu K, Hirano T (2001) Double-phase in vitro culture using sorbitol increases shoot proliferation and reduces hyperhydricity in Japanese pear. Sci Hortic 89(3):207–215

    Article  CAS  Google Scholar 

  40. Marino G et al (1993) Comparative effects of sorbitol and sucrose as main carbon energy sources in micropropagation of apricot. Plant Cell, Tissue Organ Cult 34(3):235–244

    Article  CAS  Google Scholar 

  41. Moncousin C et al (1992) Effects of type of carbohydrate during proliferation and rooting of microcuttings of Malus jork 9. Agronomie 12(10):775–781

    Article  Google Scholar 

  42. Höhnle M, Weber G (2005) Preliminary results of shoot regeneration from leaf explants of in vitro cultured shoots of the apple rootstock. 9th international symposium on biotechnology of temperate fruit crops and tropical species. October 10–14. ISHS Acta Hort

  43. Ruzić Đ, Lazic T, Cerovic R (2008) Micropropagation of some prunus and pyrus genotypes in vitro as affected by different carbon sources. Acta Hortic 795:413–418

    Google Scholar 

  44. Coffin R, Taper C, Chong C (1976) Sorbitol and sucrose as carbon source for callus culture of some species of the Rosaceae. Can J Bot 54(7):547–551

    Article  Google Scholar 

  45. Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77(5):497–506

    Article  CAS  Google Scholar 

  46. Stoop JMH, Pharr DM (1993) Effect of different carbon sources on relative growth rate, internal carbohydrates, and mannitol 1-oxidoreductase activity in celery suspension cultures. Plant Physiol 103(3):1001–1008

    PubMed  CAS  Google Scholar 

  47. Gürel S, Gülsen Y (1998) The effects of different sucrose, agar and pH levels on in vitro shoot production of almond (Amygdalus communis L.). Turkish J Bot 22:363–373

    Google Scholar 

  48. Bianco RL, Rieger M (2002) Partitioning of sorbitol and sucrose catabolism within peach fruit. J Am Soc Hortic Sci 127(1):115–121

    Google Scholar 

  49. Wilson W (1972) Control of crop processes. In: Rees AR, Cockshull KE, Hand DW, Hurd RG (eds) Crop processes in controlled environment. Acadmy Press, London

    Google Scholar 

  50. Baskaran P, Jayabalan N (2005) Role of basal media, carbon sources and growth regulators in micropropagation of Eclipta alba: a valuable medicinal herb. KMITL Sci J 5(2):469–482

    Google Scholar 

  51. Romano A, Noronha C, Martins-Louca M (1995) Role of carbohydrates in micropropagation of cork oak. Plant Cell, Tissue Organ Cult 40(2):159–167

    Article  CAS  Google Scholar 

  52. Swamy MK, Balasubramanya S, Anuradha M (2010) In vitro multiplication of Pogostemon cablin Benth. Through direct regeneration. Afr J Biotechnol 9(14):2069–2075

    Google Scholar 

  53. Hazarika B et al (2000) Sucrose induced biochemical changes in in vitro microshoots of Citrus species. Indian J Hortic 57(1):27–31

    Google Scholar 

  54. George EF (1984) ShelTington P Plant propagation by tissue culture. Eastern Press, Reading Berks

    Google Scholar 

  55. Sridhar T, Naidu C (2011) Effect of different carbon sources on in vitro shoot regeneration of Solanum nigrum (Linn.): an important antiulcer medicinal plant. J Phytol 3(2):78–82

    Google Scholar 

  56. Abou Rayya M, Kassim N, Ali E (2011) Effect of different cytokinins concentrations and carbon sources on shoot proliferation of bitter almond nodal cuttings. J Am Sci 6(9):135–139

    Google Scholar 

  57. Preethi D, Sridhar TM, Naidu CV (2011) Carbohydrate concentration influences on in vitro plant regeneration in Stevia rebaudiana. J Phytol 3:61–64

    CAS  Google Scholar 

  58. Harada H, Murai Y (1996) Micropropagation of Prunus mume. Plant Cell, Tissue Organ Cult 46(3):265–267

    Article  CAS  Google Scholar 

  59. Vitova L et al (2002) Mannitol utilisation by celery (Apium graveolens) plants grown under different conditions in vitro. Plant Sci 163(4):907–916

    Article  Google Scholar 

  60. Yuri J (1988) Anwendung von polyethylen-glycol und mannitol bei studien zum wasserstreß. Gartenbauwissenschaft 53:270–273

    Google Scholar 

  61. Sairam R et al (2003) A study on the effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell, Tissue Organ Cult 75(1):79–85

    Article  CAS  Google Scholar 

  62. Rahman M et al (2010) Role of sucrose, glucose and maltose on conventional potato micropropagation. J Agric Technol 6(4):733–739

    Google Scholar 

  63. Hilae A, Te-chato S (2005) Effect of carbon sources and strength of MS medium on germination of somatic embryos of oil palm (Elaeis guineensis Jacq.). Songklanarin J Sci Tech 27(Suppl 3): 629–635

    Google Scholar 

  64. Mehta UJ, Krishnamurthy K, Hazra S (2000) Regeneration of plants via adventitious bud formation from mature zygotic embryo axis of tamarind (Tamarindus indica L.). Curr Sci 78(10):1231–1234

    Google Scholar 

  65. Yildiz M, Onde S, Ozgen M (2007) Sucrose effects on phenolic concentration and plant regeneration from sugarbeet leaf and petiole explants. J Sugar Beet Res 44(1/2):1

    Article  Google Scholar 

  66. Silva JA (2004) The effect of carbon source on in vitro organogenesis of chrysanthemum thin cell layers. Bragantia 63(2):165–177

    Article  Google Scholar 

  67. Thorpe TA (2004) Turning point article to root or not to root, that is the question: reflections of a developmental plant physiologist. In Vitro Cell & Dev Biol-Plant 40(2):128–142

    Article  Google Scholar 

  68. Hisajima S, Thorpe T (1985) Carbohydrate utilization and activities of various glycosidases in cultured Japanese morning-glory callus. Plant Tissue Cult Lett 2(1):14–21

    Article  CAS  Google Scholar 

  69. Constabel F (1960) Zur Amylasesekretion pflanzlicher Gewebekulturen. Naturwissenschaften 47(1):17–18

    Article  CAS  Google Scholar 

  70. Maretzki ATM, Nickell LG (1972) Influence of osmotic potentials on the growth and chemical composition of sugar cane cell culture. Hawaii Plant 48:183–199

    Google Scholar 

  71. Yamaguchi H et al (2011) Trehalose drastically extends the in vitro vegetative culture period and facilitates maintenance of Torenia fournieri plants. Plant Biotechnol 28(2):263–266

    Article  CAS  Google Scholar 

  72. Ikram-ul-Haq et al (2011) Effects of different fruit juices used as carbon source on cucumber seedling under in vitro cultures. Afr J Biotechnol 10(38):7404–7408

    Google Scholar 

  73. Custódio L, Martins-Loução M, Romano A (2004) Influence of sugars on in vitro rooting and acclimatization of carob tree. Biol Plant 48(3):469–472

    Article  Google Scholar 

  74. Pawlicki N, Welander M (1995) Influence of carbohydrate source, auxin concentration and time of exposure on adventitious rooting of the apple rootstock Jork 9. Plant Sci 106(2):167–176

    Article  CAS  Google Scholar 

  75. Ahmad T et al (2003) Effect of culture media and growth regulators on micropropagation of peach rootstock GF 677. Pak J Bot 35(3):331–338

    CAS  Google Scholar 

  76. Balla I et al (2003) Nutrition of the micropropagated fruit trees in vitro and ex vitro. Intern J Hortic Sci Hung 92:43–46

    Google Scholar 

  77. Al-Khateeb A (2002) Influence of different carbon sources and concentrations on in vitro root formation of date palm, Phoenix dactylifera L. cv Khanezi. Zagazig. J Agricultural Res 28(3):597–608

    Google Scholar 

  78. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. The Plant Cell Online 14(suppl 1):185–205

    Google Scholar 

  79. George EF (1996) Plant propagation by tissue culture (Part II: in practice) Exegetics Limited Press, London

  80. Theriou KD (1989) Factors affecting the in vitro culture of peach-almond hybrid GF-677 in the stage of multiplication and rooting. Aristotle University of Thessaloniki, Thessaloniki

    Google Scholar 

  81. Bahmani R, Karami O, Gholami M (2009) Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM. 106. World Appl Sci J 6(11):1513–1517

    CAS  Google Scholar 

  82. Yaseen M et al (2009) Assessment of apple rootstocks M 9 and M 26 for in vitro rooting potential using different carbon sources. Pak J Bot 41:769–781

    Google Scholar 

  83. Weaver RJ (1972) Plant growth substances in Agriculture. W. H. Freeman and Company, San Francisco

    Google Scholar 

  84. Creelman RA et al (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings: analysis of growth, sugar accumulation, and gene expression. Plant Physiol 92(1):205–214

    Article  PubMed  CAS  Google Scholar 

  85. Ibrahim K, Alromaihi K, Elmeer KMS (2010) The combined role of sucrose with iba and naa in rooting of date palm somatic embryos cv Khanaizi. Plant Tissue Cult and Biotechnol 19(2):127–132

    Google Scholar 

  86. Kumar A et al (1999) In vitro propagation of Gladiolus hybridus Hort.: synergistic effect of heat shock and sucrose on morphogenesis. Plant Cell, Tissue Organ Cult 57(2):105–112

    Article  CAS  Google Scholar 

  87. Hassan M, Gadalla E, Abd-El Kareim A (2008) Effect of sucrose and abscisic acid on in vitro growth and development of date palm during rooting stage. Arab J Biotech 11(2):281–292

    Google Scholar 

  88. Leifert C et al (1992) Effect of medium acidity on growth and rooting of different plant species growing in vitro. Plant Cell, Tissue Organ Cult 30(3):171–179

    Article  Google Scholar 

  89. Wang CY et al (2008) Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227(5):1063–1077

    Article  PubMed  CAS  Google Scholar 

  90. Faria RT et al (2004) In vitro Dendrobium nobile plant growth and rooting in different sucrose concentrations. Horticultura Brasileira 22(4):780–783

    Article  Google Scholar 

  91. Blakesley D, Weston G, Hall J (1991) The role of endogenous auxin in root initiation. Plant Growth Regul 10(4):341–353

    Article  CAS  Google Scholar 

  92. Bouza L et al (1994) Relations between auxin and cytokinin contents and in vitro rooting of tree Peony (Paeonia suffruticosa Andr.). Plant Growth Regul 15(1):69–73

    Article  CAS  Google Scholar 

  93. Teixeira da Silva JA (2003) Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum. Plant Growth Regul 39(1):67–76

    Article  CAS  Google Scholar 

  94. Tremblay FM, Lalonde M (1984) Requirements for in vitro propagation of seven nitrogen-fixing Alnus species. Plant Cell, Tissue Organ Cult 3(3):189–199

    Article  Google Scholar 

  95. Alvarez R, Nissen SJ, Sutter EG (1989) Relationship between indole-3-acetic acid levels in apple (Malus pumila Mill) rootstocks cultured in vitro and adventitious root formation in the presence of indole-3-butyric acid. Plant Physiol 89(2):439

    Article  PubMed  CAS  Google Scholar 

  96. MacGregor DR et al (2008) Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. The Plant Cell Online 20(10):2643–2660

    Article  CAS  Google Scholar 

  97. Van Oosten JJ, Besford R (1994) Sugar feeding mimics effect of acclimation to high CO2-rapid down regulation of Rubisco small subunit transcripts but not of the large subunit transcripts. J Plant Physiol 143(3):306–312

    Article  Google Scholar 

  98. Baier M et al (2004) Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol 134(1):81–90

    Article  PubMed  CAS  Google Scholar 

  99. Thomas BR, Rodriguez RL (1994) Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106(4):1235–1239

    PubMed  CAS  Google Scholar 

  100. Rook F et al (2006) Sugar and ABA response pathways and the control of gene expression. Plant, Cell Environ 29(3):426–434

    Article  CAS  Google Scholar 

  101. Vargas TE et al (2004) Plant regeneration of Anthurium andreanum cv Rubrun. Electron J Biotechnol 7(3):10–11

    Google Scholar 

  102. Bieleski RL (1982) Sugar alcohols, in Plant Carbohydrates. I. Intracellular Carbohydrates. Encyclopedia of Plant Physiology, Loewus FA, Tanner W, Editors Springer-Verlag, New York, pp 158–192

    Book  Google Scholar 

  103. Wolter KE, Skoog F (1966) Nutritional requirements of Fraxinus callus cultures. Am J Bot 53(3):263–269

    Article  Google Scholar 

  104. Thompson MR et al (1986) Mannitol metabolism in cultured plant cells. Physiol Plant 67(3):365–369

    Article  CAS  Google Scholar 

  105. Fellman J, Loescher W (1987) Comparative studies of sucrose and mannitol utilization in celery (Apium graveolens). Physiol Plant 69(2):337–341

    Article  CAS  Google Scholar 

  106. Trip P, Krotkov G, Nelson C (1964) Metabolism of mannitol in higher plants. Am J Bot 51(8):828–835

    Article  CAS  Google Scholar 

  107. Yamaki S, Ishikawa K (1986) Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J Am Soc Hortic Sci 111(1):134–137

    CAS  Google Scholar 

  108. Bozena B, Szczerba J (1991) Influence of different carbon sources on invertase activity and growth of sour cherry (Prunus cerasus L.) shoot cultures. J Exp Bot 42(7):911–915

    Article  Google Scholar 

  109. Kochba J et al (1982) Selection of stable salt-tolerant callus cell lines and embryos in Citrus sinensis and C. aurantium. Zeithschrift fuer Pflanzenphysiologie 106:111–118

    CAS  Google Scholar 

  110. Strickland SG et al (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci 48(2):113–121

    Article  CAS  Google Scholar 

  111. Wang HL et al (1999) Effect of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pools in sweet potato cell suspension cultures. Bot Bull Acad Sinica 40:219–225

    CAS  Google Scholar 

  112. Lipavska H et al (2000) Carbohydrate status during somatic embryo maturation in Norway spruce. In Vitro Cell & Deve Biol-Plant 36(4):260–267

    Article  CAS  Google Scholar 

  113. Cunha A, Ferreira MF (1999) Influence of medium parameters on somatic embryogenesis from hypocotyl explants of flax (Linum usitatsissimum L.): effect of carbon source, total inorganic nitrogen and balance between ionic forms and interaction between calcium and zeatin. J Plant Physiol 155(4–5):591–597

    Article  CAS  Google Scholar 

  114. Carvalho RN (1998) Cultivo in vitro de Bauhinia forficata Link, school of agriculture Luiz de Queiroz, Piracicaba, pp 44–51

  115. Tsukahara M, Hirosawa T, Kishine S (1996) Efficient plant regeneration from cell suspension cultures of rice (Oryza sativa L.). J Plant Physiol 149(1–2):157–162

    Article  CAS  Google Scholar 

  116. Jain R et al (1997) Carbohydrate and osmotic requirements for high-frequency plant regeneration from protoplast-derived colonies of indica and japonica rice varieties. J Exp Bot 48(3):751

    Article  CAS  Google Scholar 

  117. Okazaki K, Koizumi M (1994) Callus formation and regeneration of some species of Lilium. Genetic Improv Hortic Crops Biotechnol 392:97–106

    Google Scholar 

  118. Kramut P, Te-chato S (2010) Effect of culture media, plant growth regulators and carbon sources on establishment of somatic embryo in suspension culture of oil palm. J Agric Technol 6(1):159–170

    Google Scholar 

  119. Chehmalee S, Te-chato S (2008) Induction of somatic embryogenesis and plantlet regeneration from cultured zygotic embryo of oil palm. J Agric Technol 4(2):137–146

    Google Scholar 

  120. Bartels D et al (1991) An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. The EMBO J 10(5):1037–1043

    CAS  Google Scholar 

  121. Frick H, Morley K (1995) Metabolism of lactose by Lemna minor L. (Duckweed) callus. Process Biochem 30(1):57–62

    CAS  Google Scholar 

  122. Bellettre A, Couillerot JP, Vasseur J (1999) Effects of glycerol on somatic embryogenesis in Cichorium leaves. Plant Cell Rep 19(1):26–31

    Article  CAS  Google Scholar 

  123. Lemos E, Blake J (1996) Micropropagation of juvenile and adult Annona squamosa. Plant Cell, Tissue Organ Cult 46(1):77–79

    Article  CAS  Google Scholar 

  124. Cabasson C et al (1995) Characteristics of citrus cell cultures during undifferentiated growth on sucrose and somatic embryogenesis on galactose. Physiol Plant 93(3):464–470

    Article  CAS  Google Scholar 

  125. Spiegel-Roy P, Saad S (1997) Regeneration from salt tolerant callus in citrus. Adv in Hortic Sci 1:3–9

    Google Scholar 

  126. Steiner N et al (2005) Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Brazilian Arch Biol and Technol 48(6):895–903

    Article  CAS  Google Scholar 

  127. Blanc G et al Z (2002) Regulation of growth, development and whole organism physiology-differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Mull. Arg.). J Exp Bot 53(373):1453–1462

  128. Finkelstein RR, Gibson SI (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5(1):26–32

    Article  PubMed  CAS  Google Scholar 

  129. León P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8(3):110–116

    Article  PubMed  CAS  Google Scholar 

  130. Kayim M, Koc NK (2006) The effects of some carbohydrates on growth and somatic embryogenesis in citrus callus culture. Sci Hortic 109(1):29–34

    Article  CAS  Google Scholar 

  131. Kochba J (1978) Stimulation of embryogenesis in citrus ovular callus by ABA, ethephon, CCC and Alar and its suppression by GA-3. Zeit Pflanzenphysiol 89:427–432

    CAS  Google Scholar 

  132. Kochba J, Button J (1974) The stimulation of embryogenesis and embryoid development in habituated ovular callus from the Shamouti orange {Citrus sinensis) as affected by tissue age and sucrose concentration. Z Pflanzenphysiol 73:415–421

    Google Scholar 

  133. Hidaka T, Omura M (1989) Control of embryogenesis in citrus cell culture: regeneration from protoplasts and attempts to callus bank. Bull Fruit Tree Res Stn B 16:1–17

    Google Scholar 

  134. Attree S, Fowke L (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell, Tissue Organ Cult 35(1):1–35

    Article  CAS  Google Scholar 

  135. Sul IW, Korban SS (1998) Effects of media, carbon sources and cytokinins on shoot organogenesis in the christmas tree scots pine (Pinus sylvestris L.). J Hortic Sci and Biotechnol 73(6):822–827

    CAS  Google Scholar 

  136. Towill LE (1990) Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep 9(4):178–180

    Article  Google Scholar 

  137. Pennycooke J, Towill L (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification. Plant Cell Rep 19(7):733–737

    Article  CAS  Google Scholar 

  138. Kuranuki Y, Sakai A (1995) Cryopreservation of in vitro-grown shoot tips of tea (Camellia sinensis) by vitrification. Cryo-letters 16

  139. Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13(8):442–446

    Article  Google Scholar 

  140. Decruse S, Seeni S, Pushpangadan P (1999) Cryopreservation of alginate coated shoot tips of in vitro grown holostemma annulare (roxb.) k. schum, an endangered medicinal plant: influence of pre culture and dmso treatment on survival and regeneration. Cryo-letters 20(4):243–250

    Google Scholar 

  141. Gonza′ lez-Benito M, Pe′ rez C, Viviani A (1997) Cryopreservation of nodal explants of an endangered plant species (Centaurium rigualii Esteve) using the encapsulation–dehydration method. Biodivers Conserv 6(4):583–590

    Article  Google Scholar 

  142. Pence VC (2001) Cryopreservation of shoot tips of Selaginella uncinata. Am Fern J 91(1):37–40

    Article  Google Scholar 

  143. Paul H, Daigny G, Sangwan-Norreel B (2000) Cryopreservation of apple (Malus domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19(8):768–774

    Article  CAS  Google Scholar 

  144. Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9(6):328–331

    Article  Google Scholar 

  145. Taylor M, Benton M (1987) Interaction of cooling rate, warming rate, and extent of permeation of cryoprotectant in determining survival of isolated rat islets of Langerhans during cryopreservation. Diabetes 36(1):59–65

    Article  PubMed  CAS  Google Scholar 

  146. Sarasan V et al (2006) Conservation in vitro of threatened plants: progress in the past decade. In Vitro Cell & Dev Biol-Plant 42(3):206–214

    Article  Google Scholar 

  147. Grapin A et al (2002) Cryopreservation of Pelargonium shoot tips by encapsulation-dehydration: effects of sucrose concentration, dehydration duration and genotype. XXVI international horticultural congress: plant genetic resources. The fabric of horticulture’s future. 23 July Toronto, ISHS Acta Hort

  148. Langis R, Steponkus P (1991) Vitrification of isolated rye protoplasts: protection against dehydration injury by ethylene glycol. Cryo Lett 12:107–112

    CAS  Google Scholar 

  149. Turner S et al (2001) Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot 87(3):371

    Article  CAS  Google Scholar 

  150. Turner S et al (2001) Genetic fidelity and viability of Anigozanthos viridis following tissue culture, cold storage and cryopreservation. Plant Sci 161(6):1099–1106

    Article  CAS  Google Scholar 

  151. Turner S et al (2001) Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci 160(3):489–497

    Article  PubMed  CAS  Google Scholar 

  152. Saiprasad GVS (2001) Artificial seeds and their applications. Resonance 6(5):39–47

    Article  Google Scholar 

  153. Antonietta GM et al (2007) Preliminary research on conversion of encapsulated somatic embryos of Citrus reticulata Blanco, cv. Mandarino Tardivo di Ciaculli. Plant Cell, Tissue Organ Cult 88(1):117–120

    Article  Google Scholar 

  154. Kumar MBA, Vakeswaran V, Krishnasamy V (2005) Enhancement of synthetic seed conversion to seedlings in hybrid rice. Plant Cell, Tissue Organ Cult 81(1):97–100

    Article  CAS  Google Scholar 

  155. Micheli M, Mencuccini M, Standardi A (1998) Encapsulation of in vitro proliferated buds of olive. Adv in Hortic Sci 4:63–168

    Google Scholar 

  156. Nieves N et al (1998) Artificial endosperm of Cleopatra tangerine zygotic embryos: a model for somatic embryo encapsulation. Plant Cell, Tissue Organ Cult 54(2):77–83

    Article  Google Scholar 

  157. Soneji J, Rao P, Mhatre M (2002) Germination of synthetic seeds of pineapple (Ananas comosus L. Merr.). Plant Cell Rep 20(10):891–894

    Article  CAS  Google Scholar 

  158. Redenbaugh K, Fijii J, Slade D, Green C et al (1988) Encapsulated plant embryos, in advances in biotechnological processes, Alan R Liss New York, pp 473–493

  159. McKersie BD, Brown DCW (1996) Somatic embryogenesis and artificial seeds in forage legumes. Seed Sci Res 6(03):109–126

    Article  Google Scholar 

  160. Pintos B et al (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell, Tissue Organ Cult 95(2):217–225

    Article  Google Scholar 

  161. Rai MK, Jaiswal V, Jaiswal U (2008) Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Sci Hortic 118(1):33–38

    Article  CAS  Google Scholar 

  162. Nower AA, Ali EAM, Rizkalla AA (2007) Synthetic seeds of pear (Pyrus communis L.) rootstock storage In vitro. Aust J Basic and Appl Sci 1(3):262–270

    CAS  Google Scholar 

  163. Ikhlaq M et al (2010) In vitro storage of synthetic seeds: effect of different storage conditions and intervals on their conversion ability. Afr J Biotechnol 9(35):5712–5721

    Google Scholar 

  164. Onishi N, Sakamoto Y, Hirosawa T (1994) Synthetic seeds as an application of mass production of somatic embryos. Plant Cell, Tissue Organ Cult 39(2):137–145

    Article  Google Scholar 

  165. Senaratna T et al (1995) Significance of the zygotic seed coat on quiescence and desiccation tolerance of Medicago sativa L. somatic embryos. Plant Cell Rep 14(6):375–379

    Article  CAS  Google Scholar 

  166. Ara H, Jaiswal U, Jaiswal V (2000) Synthetic seed: prospects and limitations. Curr Sci 78(12):1438–1444

    Google Scholar 

  167. Antonietta GM, Emanuele P (1998) Alvaro V Effects of encapsulation on Citrus reticulata Blanco somatic embryo conversion. Plant Cell, Tissue Organ Cult 55(3):235–238

    Article  Google Scholar 

  168. Mayor M et al (2003) Reduction of hyperhydricity in sunflower tissue culture. Plant Cell, Tissue Organ Cult 72(1):99–103

    Article  CAS  Google Scholar 

  169. Kevers C et al (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell, Tissue Organ Cult 77(2):181–191

    Article  Google Scholar 

  170. Gaspar T et al (1987) Vitrification: morphological, physiological, and ecological aspects. in: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. General principles and biotechnology, Martinus Nijhoff, Dordrecht pp 152–166

  171. Kumar U (2001) Methods in Plant Tissue Culture, 2nd edn. Agrobios, India

    Google Scholar 

  172. Rugini E et al (1985) Control of shoot” vitrification” of almond and olive grown in vitro. Symposium on in vitro problems related to mass propagation of horticultural plants. September 16–20 Belgium ISHS Acta Hort

  173. Langford P, Wainwright H (1987) Influence of sucrose concentration on the photosynthetic ability of in vitro grown rose shoots. Ann Bot 60(6):633–640

    CAS  Google Scholar 

  174. Thomas P, Mythili J, Shivashankara K (2000) Explant, medium and vessel aeration affect the incidence of hyperhydricity and recovery of normal plantlets in triploid watermelon. J Hortic Sci Biotechnol 75(1):19–25

    Google Scholar 

  175. Bottcher I, Goring H (1987) Die vitrification der pflanzen ber der in vitro kultur as infiltration problem. Biol Rundsch 25:191–193

    Google Scholar 

  176. Kevers C, Gaspar D (1986) Vitrification of carnation in vitro: changes in water content, extracellular space, air volume, and ion levels. Physiologie végétale 24(6):647–653

    CAS  Google Scholar 

  177. Ramarosandratana A et al (2001) Effects of carbohydrate source, polyethylene glycol and gellan gum concentration on embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos. In Vitro Cell & Dev Biol-Plant 37(1):29–34

    Article  CAS  Google Scholar 

  178. Scott P, Lyne R, Ap Rees T (1995) Metabolism of maltose and sucrose by microspores isolated from barley (Hordeum vulgare L.). Planta 197(3): 435–441

    Google Scholar 

  179. Gasdaska JR, Baker A (1997) Redox signaling and the control of cell growth and death. Adv Pharmacol 38:329–335

    PubMed  Google Scholar 

  180. Asada K (1992) Ascorbate peroxidase- a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85(2):235–241

    Article  CAS  Google Scholar 

  181. Hendry GAF, Brocklebank KJ (1985) Iron-induced oxygen radical metabolism in waterlogged plants. New Phytol 101(1):199–206

    Article  CAS  Google Scholar 

  182. Hunter MIS, Hetherington AM, Crawford RMM (1983) Lipid peroxidation–a factor in anoxia intolerance in Iris species? Phytochemistry 22(5):1145–1147

    Article  CAS  Google Scholar 

  183. Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76(3):456–459

    CAS  Google Scholar 

  184. Piqueras A et al (1998) Effect of different environmental conditions in vitro on sucrose metabolism and antioxidant enzymatic activities in cultured shoots of Nicotiana tabacum L. Plant Growth Regul 25(1):5–10

    Article  CAS  Google Scholar 

  185. Polle A, Eiblmeier M (1995) Carbohydrate accumulation affects the redox state of ascorbate in detached tobacco leaves. Bot Act 108(5):432–438

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishfaq Ahmad Hafiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaseen, M., Ahmad, T., Sablok, G. et al. Review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40, 2837–2849 (2013). https://doi.org/10.1007/s11033-012-2299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2299-z

KeyWords

Navigation