Skip to main content
Log in

Molecular characterization of oilseed rape accessions collected from multi continents for exploitation of potential heterotic group through SSR markers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Evaluation of the genetic diversity in conventional and modern rapeseed cultivars is essential for conservation, management and utilization of these genetic resources for high yielding hybrid production. The objective of this research was to evaluate a collection of 86 oilseed rape cultivars with 188 simple sequence repeat (SSR) markers to assess the genetic variability, heterotic group identity and relationships within and between the groups identified among the genotypes. A total of 631 alleles at 188 SSR markers were detected including 53 and 84 unique and private alleles respectively, which indicated great richness and uniqueness of genetic variation in these selected cultivars. The mean number of alleles per locus was 3.3 and the average polymorphic information content was 0.35 for all microsatellite loci. Unweighted Pair Group Method with Arithmetic Mean clustering and principal component analysis consistently divided all the cultivars into four distinct groups (I, II, III and IV) which largely coincided with their geographical distributions. The Chinese origin cultivars are predominantly assembled in Group II and showed wide genetic base because of its high allelic abundance at SSR loci while most of the exotic cultivars grouped into Group I and were highly distinct owing to the abundant private and unique alleles. The highest genetic distance was found between Group I and IV, which mainly comprised of exotic and newly synthesized yellow seeded (1728-1 and G1087) breeding lines, respectively. Our study provides important insights into further utilization of exotic Brassica napus accessions in Chinese rapeseed breeding and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Becker HC, Loptien H, Robbelen G (1999) Breeding: an overview. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 413–460

    Chapter  Google Scholar 

  2. Salunkhe DK, Chavan JK, Adsule RN, Kadam SS (1992) World oilseeds, chemistry technology and utilization. Van Nostrand Reinbold, New York, p 59

    Google Scholar 

  3. Liu HL (1985) Rapeseed genetics and breeding. Shanghai Science and Technology Press, Shanghai, pp 38–42

    Google Scholar 

  4. Zhou WJ (2001) Oilseed rape. In: Zhang GP, Zhou WJ (eds) Crop cultivation. Zhejiang University Press, Hangzhou, pp 153–178

    Google Scholar 

  5. Fu T (2000) Breeding and utilization of rapeseed hybrid. Hubei Science Technology, Hubei, pp 167–169

    Google Scholar 

  6. Rakow G, Woods DL (1987) Outcrossing in rape and mustard under Saskatchewan prairie conditions. Can J Plant Sci 67:147–151

    Article  Google Scholar 

  7. Snowdon RJ, Lühs W, Friedt W (2006) Oilseed rape. In: Kole C (ed) Genome mapping and molecular breeding, vol 2: oilseeds. Springer Verlag, Heidelberg, pp 55–114

    Google Scholar 

  8. Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot 55:1–57

    Google Scholar 

  9. Downey RK (1964) A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can J Plant Sci 44:499–504

    Article  Google Scholar 

  10. Krzymanski J (1970) Inheritance of thioglucoside content by rapeseed (Brassica napus). Journees Internationales sur le Colza. C.E.T.I.O.M, 212–218

  11. Seyis F, Snowdon R, Luhs W, Friedt W (2003) Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed 122:473–478

    Article  CAS  Google Scholar 

  12. Messmer MM, Melchinger AE, Herrmann RG, Boppenmaier J (1993) Relationships among early European maize inbreeds: II. Comparison of pedigree and RFLP data. Crop Sci 33:944–950

    Article  Google Scholar 

  13. Lefort-Buson M, Guillot-Lemoine B, Dattée Y (1987) Heterosis and genetic distance in rapeseed (Brassica napus L.): crosses between European and Asiatic selfed lines. Genome 29:413–418

    Article  Google Scholar 

  14. Gehringer A, Spiller T, Basunanda P, Snowdon R, Friedt W (2007) New oilseed rape (Brassica napus) hybrids with high levels of heterosis for seed yield under nutrient-poor conditions. Breed Sci 57:315–320

    Article  Google Scholar 

  15. Diers BW, McVetty PBE, Osborn TC (1996) Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci 36:79–83

    Article  Google Scholar 

  16. Riaz A, Li G, Quresh Z, Swati MS, Quiros CF (2001) Genetic diversity of oilseed Brassica napus inbred lines based on sequence related amplified polymorphism and its relation to hybrid performance. Plant Breed 120:411–415

    Article  CAS  Google Scholar 

  17. Ali M, Copeland LO, Elias SG, Kelley JD (1995) Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor Appl Genet 91:118–121

    Article  Google Scholar 

  18. Yu CY, Hu SW, Zhao HX, Guo AG (2005) Genetic distances revealed by morphological characters, isozymes, protein and RAPD markers and their relationships with Hybrid performance in oilseed rape (Brassica napus L.). Theor Appl Genet 110:511–518

    Article  PubMed  CAS  Google Scholar 

  19. Prasad M, Varshnez RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  20. Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theor Appl Genet 88:662–668

    Article  Google Scholar 

  21. Lombard V, Baril CP, Dubreuil P, Blouet F, Zhang D (2000) Genetic relationships and fingerprinting of rapeseed cultivars by AFLP: consequences for varietal registration. Crop Sci 40:1417–1425

    Article  CAS  Google Scholar 

  22. Mailer RJ, Wratten N, Vonarx M (1997) Genetic diversity amongst Australian canola cultivars determined by randomly amplified polymorphic DNA. Aust J Exp Agric 37:793–800

    Article  CAS  Google Scholar 

  23. Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet 106:1091–1101

    PubMed  CAS  Google Scholar 

  24. Hasan M, Seyis F, Badani A, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon R (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802

    Article  CAS  Google Scholar 

  25. Powell W, Maachray GC, Proven J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  26. Jones CJ, Edwards KJ, Castiglione S, Winfield MO, Sala F, Van de Weil AC, Bredemeijer G, Vosman B, Matthes M, Maly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linaacero R, Vazque A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  27. Pejic I, Ajmore-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  28. Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  29. Blair MW, Diaz JM, Hidalgo R, Diaz LM, Duque MC (2007) Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor Appl Genet 116:29–43

    Article  PubMed  CAS  Google Scholar 

  30. Charcosset AM, Lefort-Buson M, Gallais A (1991) Relationship between heterosis and heterozygosity at marker loci: a theoretical computation. Theor Appl Genet 81:571–575

    Article  Google Scholar 

  31. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  32. Deng W, Zhou L, Zhou YT, Wang YJ, Wang ML, Zhao Y (2010) Isolation and characterization of three duplicated PISTILLATA genes in Brassica napus. Mol Biol Rep. doi:10.1007/s11033-010-9981-9

  33. Chen S, Nelson MN, Ghamkhar K, Fu T, Cowling WA (2008) Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51(1):1–10

    Article  PubMed  Google Scholar 

  34. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  35. Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301

    Article  PubMed  CAS  Google Scholar 

  36. Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King GJ, Wu J, Liu K (2010) Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics 11:594

    Article  PubMed  Google Scholar 

  37. Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K (2010) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breed. doi:10.1007/s11032-010-9509-y

  38. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  39. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Oxford University Press, Oxford, pp 2128–2129

    Google Scholar 

  40. Rohlf FJ (2000) NTSYS-PC 2.1. Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket

    Google Scholar 

  41. Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  42. Junjian N, Colowit PM, Mackill D (2002) Evaluation of genetic diversity in rice subspecies by microsatellite markers. Crop Sci 42:601–607

    Article  Google Scholar 

  43. Wang LX, Guan RX, Liu ZX, Chang RZ, Qiu LJ (2006) Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci 46:1032–1038

    Article  Google Scholar 

  44. Gong X, Westcott S, Li C, Yan G, Lance R, Sun D (2009) Comparative analysis of genetic diversity between Qinghai–Tibetan wild and Chinese landrace barley. Genome 52:849–861

    Article  PubMed  CAS  Google Scholar 

  45. Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng J (2010) Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome 53(11):908–916

    Article  PubMed  CAS  Google Scholar 

  46. Zhou WJ, Zhang GQ, Tuvesson S, Dayteg C, Gertsson B (2006) Genetic survey of Chinese and Swedish oilseed rape (Brassica napus L.) by simple sequence repeats (SSRs). Genet Resour Crop Evol 53:443–447

    Article  CAS  Google Scholar 

  47. Butruille DV, Guries RP, Osborn TC (1999) Increasing yield of spring oilseed rape hybrids through introgression of winter germplasm. Crop Sci 39:1491–1496

    Article  Google Scholar 

  48. Jones DF (1945) Heterosis resulting from degenerative changes. Genetics 30:527–542

    Google Scholar 

  49. Xiao J, Li J, Yuan L, McCouch SR, Tanksley SD (1996) Genetic diversity and its relationships to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92:637–643

    Article  CAS  Google Scholar 

  50. Seyis F, Friedt W, Lühs W (2006) Yield of Brassica napus L. hybrids developed using resynthesised rapeseed material. Field Crops Res 96:176–180

    Article  Google Scholar 

  51. Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. 31071452) and the Doctoral Fund of Ministry of Education of China (No. 20100146110019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kede Liu.

Additional information

M. Younas and Y. Xiao contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Younas, M., Xiao, Y., Cai, D. et al. Molecular characterization of oilseed rape accessions collected from multi continents for exploitation of potential heterotic group through SSR markers. Mol Biol Rep 39, 5105–5113 (2012). https://doi.org/10.1007/s11033-011-1306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1306-0

Keywords

Navigation