Skip to main content
Log in

Association mapping of days to flowering in common bean (Phaseolus vulgaris L.) revealed by DArT markers

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In the current study, 173 common bean genotypes from several geographic regions were studied. Days to flowering (DF) was evaluated in two experimental locations in Izmir, Turkey (Bornova and Menemen) in 2 years (2015 and 2016) and was found to range from 30 to 62.7 days with a mean value of 41.5 days. A total of 22,848 SNPs based on diversity array technology were developed, and after filtering, the remaining 20,766 SNP markers were used for calculating linkage disequilibrium. Chromosomes 1–11 contained 1846, 2342, 2184, 1153, 1351, 1520, 1953, 2080, 2065, 1199, and 1511 SNPs, respectively. A total of 1562 SNPs were identified as scaffold markers. The PIC value was 0.25, ranging from 0.005 to 0.500. Common bean accessions were divided into two main subpopulations, namely POP1 (Mesoamerican) and POP2 (Andean). Mixed linear model using the Q + K model showed that three SNPs had a significant association (p < 0.01) in Bornova in 2015 and seven SNPs had a significant association (p < 0.01) in the same location in 2016. Five significant associations (p < 0.01) were identified in 2015 while six (p < 0.01) were identified in Menemen in 2016. When the data from both locations and both years was combined, six SNPs were significant (p < 0.01). For DF, 11 putative candidate genes were predicted from the sequences representing homology to linked SNPs. We conclude that the markers, which were significantly associated with the DF of the common bean genotypes in the current study, can be used for marker-assisted selection in plant breeding program of common bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asfaw A, Blair MW, Almekinders C (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120:1–12

    Article  PubMed  Google Scholar 

  • Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2015) Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 5:12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra VV, Paredes MC, Rojo CM, Díaz LM, Blair MW (2010) Microsatellite marker characterization of Chilean common bean (Phaseolus vulgaris L.) germplasm. Crop Sci 50:1932

    Article  CAS  Google Scholar 

  • Bhakta MS, Gezan SA, Clavijo Michelangeli JA et al (2017) A predictive model for time-to-flowering in the common bean based on QTL and environmental variables. G3: Genes, Genomes, Genetics 7:3901–3912

    Article  Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, Logozzo G, Stougaard J, McClean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci 109:E788–E796

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Díaz LM, Buendía HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, González LF, Kimani PM, Butare L (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Soler A, Cortés AJ (2012) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS One 7:e49488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolibok-Brągoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome-genetic diversity and mapping. BMC Genomics 10:578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinez B, Blair MW, Kilian A, Carbonell SAM, Chiorato AF, Rubiano LB (2012) A whole genome DArT assay to assess germplasm collection diversity in common beans. Mol Breed 30:181–193

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)-model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Buchner P, Prosser IM, Hawkesford MJ (2004) Phylogeny and expression of paralogous and orthologous sulphate transporter genes in diploid and hexaploid wheats. Genome 47:526–534

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Sofia da Silva H, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Chiozzotto R, Ramírez M, Talbi C, Cominelli E, Girard L, Sparvoli F, Hernández G (2018) Characterization of the symbiotic nitrogen-fixing common bean low phytic acid (lpa1) mutant response to water stress. Genes 9:99

    Article  CAS  PubMed Central  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O'sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  CAS  PubMed  Google Scholar 

  • Cortés AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827

    Article  PubMed  Google Scholar 

  • Cosmulescu S, Botu M (2012) Walnut biodiversity in south-western Romania resource for perspective cultivars. Pak J Bot 44:307–311

    Google Scholar 

  • Debouck DG, Toro O, Paredes OM, Johnson WC, Gepts P (1993) Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Econ Bot 47:408–423

    Article  Google Scholar 

  • Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35:30

    Article  Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Fiyaz RA, Yadav AK, Krishnan G et al (2016) Mapping quantitative trait loci responsible for resistance to Bakanae disease in rice. Rice 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Food and Agriculture Organization of the United Nations. 2016 world production statistics for common bean. http://www.fao.org/faostat/en/#data/QC. Accessed May 20, 2018

  • Galeano CH, Cortes AJ, Fernandez AC et al (2012) Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gepts P, Bliss F (1985) F1 hybrid weakness in the common bean: differential geographic origin suggest two gene pools in cultivated bean germplasm. J Hered 76:447–450

    Article  Google Scholar 

  • Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González AM, Yuste-Lisbona FJ, Saburido S, Bretones S, De Ron AM, Lozano R, Santalla M (2016) Major contribution of flowering time and vegetative growth to plant production in common bean as deduced from a comparative genetic mapping. Front Plant Sci 7:1940

    PubMed  PubMed Central  Google Scholar 

  • i Forcada CF, Oraguzie N, Igartua E, Moreno MÁ, Gogorcena Y (2013) Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349

    Article  Google Scholar 

  • Iquira E, Humira S, François B (2015) Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol 15:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal V, Mir R, Mohan A, Balyan H, Gupta P (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102

    Article  CAS  Google Scholar 

  • Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487

    Article  PubMed  Google Scholar 

  • Kamfwa K, Cichy KA, Kelly JD (2015) Genome-wide association study of agronomic traits in common bean. Plant Genome 8. https://doi.org/10.3835/plantgenome2014.09.0059

  • Koinange EM, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  CAS  PubMed  Google Scholar 

  • Leite ME, Santos JB, Carneiro FF, Couto KR (2011) Natural selection in common bean microsatellite alleles and identification of QTLs for grain yield. Electron J Biotechnol 14:5–6

    Google Scholar 

  • Li X, Liu H, Wang M, Liu H, Tian X, Zhou W, Lü T, Wang Z, Chu C, Fang J, Bu Q (2015) Combinations of Hd2 and Hd4 genes determine rice adaptability to Heilongjiang Province, northern limit of China. J Integr Plant Biol 57:698–707

    Article  CAS  PubMed  Google Scholar 

  • Linares-Ramírez AM (2013) Selection of dry bean genotypes adapted for drought tolerance in the northern Great Plains. PhD Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science

  • Ma Y, Bliss F (1978) Seed proteins of common bean. Crop Sci 18:431–437

    Article  CAS  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo LC, dos Santos JB, Ferreira DF (2002) Mapping and stability of QTLs for seed weight in common beans under different environments. Crop Breeding and Applied Biotechnology 2:227–236

    Article  Google Scholar 

  • Mendes MP, Botelho FBS, Ramalho MAP, Abreu ÂFB, Furtini IV (2008) Genetic control of the number of days to flowering in common bean. Crop Breeding and Applied Biotechnology 8:279–282

  • Miklas PN, Delorme R, Riley R (2003) Identification of QTL conditioning resistance to white mold in snap bean. J Am Soc Hortic Sci 128:564–570

    CAS  Google Scholar 

  • Miklas PN, Johnson WC, Delorme R, Gepts P (2001) QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Sci 41:309–315

    Article  Google Scholar 

  • Montgomery BL, Lagarias JC (2002) Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci 7:357–366

    Article  CAS  PubMed  Google Scholar 

  • Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD (2014) Quantitative trait loci associated with drought tolerance in common bean. Crop Sci 54:923–938

    Article  Google Scholar 

  • Nemli S, Asciogul TK, Kaya HB, Kahraman A, Esiyok D, Tanyolac B (2014) Association mapping for five agronomic traits in the common bean (Phaseolus vulgaris L.). J Sci Food Agric 94:3141–3151

    Article  CAS  PubMed  Google Scholar 

  • Nemli S, Kianoosh T, Tanyolac MB (2015) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon-based interprimer binding sites (iPBSs) markers. Turk J Agric For 39:940–948

    Article  CAS  Google Scholar 

  • Ogawa M, Kay P, Wilson S, Swain SM (2009) Arabidopsis dehiscence zone polygalacturonase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21:216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okii D, Tukamuhabwa P, Kami J et al (2014) The genetic diversity and population structure of common bean (Phaseolus vulgaris L.) germplasm in Uganda. Afr J Biotechnol 13(29):2935–2949

    Article  Google Scholar 

  • Oraguzie NC, Wilcox PL, Rikkerink EH, de Silva HN (2007) Linkage disequilibrium. In: Association mapping in plants. Springer, pp 11–39

  • Paredes OM, Gepts P (1995) Extensive introgression of Middle American germplasm into Chilean common bean cultivars. Genet Resour Crop Evol 42:29–41

    Article  Google Scholar 

  • Pennington J, Young B (1990) Iron, zinc, copper, manganese, selenium, and iodine in foods from the United States total diet study. J Food Compos Anal 3:166–184

    Article  CAS  Google Scholar 

  • Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira JJ (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120:1367–1380

    Article  PubMed  Google Scholar 

  • Perseguini JMKC, Silva GMB, Rosa JRBF, Gazaffi R, Marçal JF, Carbonell SAM, Chiorato AF, Zucchi MI, Garcia AAF, Benchimol-Reis LL (2015) Developing a common bean core collection suitable for association mapping studies. Genet Mol Biol 38:67–78

    Article  PubMed  Google Scholar 

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  • Ranawake A, Amarasinghe U (2014) Relationship of yield and yield related traits of some traditional rice cultivars in Sri Lanka as described by correlation analysis. Journal of Scientific Research and Reports 3:2395–2403

    Article  Google Scholar 

  • Rodriguez M, Rau D, Bitocchi E, Bellucci E, Biagetti E, Carboni A, Gepts P, Nanni L, Papa R, Attene G (2016) Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytol 209:1781–1794

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin–proteasome system: central modifier of plant signalling. New Phytol 196:13–28

    Article  CAS  PubMed  Google Scholar 

  • Saedler R, Jakoby M, Marin B, Galiana-Jaime E, Hulskamp M (2009) The cell morphogenesis gene SPIRRIG in Arabidopsis encodes a WD/BEACH domain protein. Plant J 59:612–621

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381

    Article  CAS  PubMed  Google Scholar 

  • Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A (2010) A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in eucalyptus. Plant Methods 6:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarano D, Rubio F, Ruiz JJ, Rao R, Corrado G (2014) Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Sci Hortic 180:72–78

    Article  Google Scholar 

  • Shi C, Navabi A, Yu K (2011) Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotte T, Holm K, McIntyre LM, Lagercrantz U, Lascoux M (2007) Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae). Plant Physiol 145:160–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tar'an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    Article  CAS  Google Scholar 

  • Tasca T, Bonan CD, De Carli GA, Battastini AM, Sarkis JJ (2003) Characterization of an ecto-5′-nucleotidase (EC 3.1.3.5) activity in intact cells of Trichomonas vaginalis. Exp Parasitol 105:167–173

    Article  CAS  PubMed  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32:275–302

    Article  CAS  PubMed  Google Scholar 

  • Wallace DH, Baudoin JP, Beaver J, Coyne DP, Halseth DE, Masaya PN, Munger HM, Myers JR, Silbernagel M, Yourstone KS, Zobel RW (1993) Improving efficiency of breeding for higher crop yield. Theor Appl Genet 86:27–40

    CAS  PubMed  Google Scholar 

  • Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Thomas B, Luo Z (2012) Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet 124:233–246

    Article  PubMed  Google Scholar 

  • Wang N, Chen B, Xu K et al (2016a) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7:338

    PubMed  PubMed Central  Google Scholar 

  • Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Dunwell JM, Xu S, Zhang YM (2016b) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6:599–609

    Article  CAS  PubMed  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  • Wu J, Chen J, Wang L, Wang S (2017) Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean. Front Plant Sci 8:380

    PubMed  PubMed Central  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu DC, Guo X, Yang WL, Sun JZ, Wang DW, Sourdille P, Zhang AM (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Paulo MJ, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50:963–973

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhiguo E, Zhang Y, Li T, Wang L, Zhao H (2015) Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments. PLoS One 10:e0122621

    Article  CAS  Google Scholar 

  • Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to especially thank Paul Gepts from the University of California-Davis (USA) for kindly sharing his control group of common bean accessions (the Mesoamerican and Andean gene pools).

Funding

The study was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with project no TUBITAK-114O555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Bahattin Tanyolac.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1.

Detailed information on the 173 common bean accessions used in the study (DOCX 22 kb)

ESM 2.

Minimum, maximum, and mean DF of the 173 common bean accessions grown in Bornova and Menemen, Izmir, Turkey in 2015 and 2016 (DOCX 12 kb)

ESM 3.

Variance analyses of DF of the 173 common bean accessions grown at two locations in 2015 and 2016 (DOCX 13 kb)

ESM 4.

DArT data obtained in current study (XLSX 17086 kb)

ESM 5.

SNPs distribution by chromosomes in common bean (PNG 57 kb)

ESM 6.

ΔK calculation based on the value of LnP (D) between successive K-values. (PNG 55 kb)

ESM 7.

Considerable differences between the groups (subpopulations) and average distances (expected heterozygosity) between the common bean accessions (DOCX 12 kb)

ESM 8.

Relative kinships of the 173 common bean accessions (PNG 76 kb)

ESM 9.

Analysis of linkage disequilibrium decay in 173 common bean accessions (PNG 6316 kb)

ESM 10.

Quantile-quantile plots for days to flowering (PNG 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, D., Asciogul, T.K., Nemli, S. et al. Association mapping of days to flowering in common bean (Phaseolus vulgaris L.) revealed by DArT markers. Mol Breeding 38, 113 (2018). https://doi.org/10.1007/s11032-018-0868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0868-0

Keywords

Navigation