Skip to main content
Log in

In silico mining of EST-SSRs in Arachis hypogaea L. and their utilization for genetic structure and diversity analysis in cultivars/breeding lines in Odisha, India

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A total of 26,685 unutilized public domain expressed sequence tags (ESTs) of Arachis hypogaea L. were analyzed to give a total of 4442 EST-SSRs, in which 517 ESTs contained more than one simple sequence repeat (SSR). Of these EST-SSRs, 2542 were mononucleotide repeats (MNRs), 803 were dinucleotide repeats (DNRs), 1043 were trinucleotide repeats (TNRs), 40 were tetranucleotide repeats (TtNRs), six were pentanucleotide repeats (PNRs) and eight were hexanucleotide repeats (HNRs). Out of these 4442 EST-SSRs, only 1160 were found to be successful in non-redundant primer design; 1060 were simple SSRs, while the remaining 100 were compound forms. Among all the motifs, MNRs were abundant, followed by TNRs and DNRs. The AAG/CTT motif was the most abundant (~33 %) TNR, while AG/CT was the most abundant DNR. For redundancy and novelty, a stringent criterion deploying three different strategies was used and a total of 782 novel EST-SSRs were added to the public domain of peanut. These novel EST-SSR markers will be useful for qualitative and quantitative trait mapping, marker-assisted selection and genetic diversity studies in cultivated peanut as well as related Arachis species. A subset of 30 novel EST-SSRs was further randomly selected for validation and genotyping studies with eight well-known cultivars and 32 advanced breeding lines (ADBX lines, ADBY lines and ADBZ lines) from Odisha state, India. The number of polymorphic markers among accessions of A. hypogaea was low; however, a set of informative EST-SSR markers detected considerable levels of genetic variability in peanut cultivars and uncharacterized breeding lines collected from Odisha. The 30 newly developed EST-SSRs from Arachis spp. showed ~97 % amplification in Cicer arientinum and 93 % in pigeon pea. Thus, the EST-SSRs developed in this study will be a very useful asset for genetic analysis, comparative genome mapping, population genetic structure and phylogenetic inferences among wild and allied species of Arachis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114(2):359–372

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156(2):847–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Cho Y, McCouch S (2002) Sequence divergence of rice microsatellites in Oryza and other plant species. Mol Genet Genomics 268(3):331–343

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zhou P, Choi YA, Huang S, Gmitter FG (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112(7):1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu YG (2012) Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS One 7(9):e44510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clauss MJ, Cobban H, Olds TM (2002) Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Mol Ecol 11(3):591–601

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160(6):1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol 8(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Davierwala AP, Reddy APK, Lagu MD, Ranjekar PK, Gupta VS (2001) Marker assisted selection of bacterial blight resistance genes in rice. Biochem Genet 39(7–8):261–278

    Article  CAS  PubMed  Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106(5):912–922

    CAS  PubMed  Google Scholar 

  • Dwivedi SL, Gurtu S, Chandra S, Yuejin W, Nigam SN (2001) Assessment of genetic diversity among selected groundnut germplasm. Plant Breed 120(4):345–349

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Feng SP, Li WG, Huang HS, Wang JY, Wu YT (2009) Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol Breed 23(1):85–97

    Article  CAS  Google Scholar 

  • Gao L, Tang J, Li H, Jia J (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12(3):245–261

    Article  CAS  Google Scholar 

  • Gao LZ, Zhang CH, Jia JZ (2005) Cross-species transferability of rice microsatellites in its wild relatives and the potential for conservation genetic studies. Genet Res Crop Evol 52(7):931–940

    Article  CAS  Google Scholar 

  • Gautami B, Ravi K, Narasu ML, Hoisington DA, Varshney RK (2009) Novel set of groundnut SSR markers for germplasm analysis and interspecific transferability. Int J Integr Biol 7(2):100–106

    CAS  Google Scholar 

  • Gimenes MA, Hoshino AA, Barbosa AVG, Palmieri DA, Lopes CR (2007) Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol 7(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Xu S, Mao W, Hu Q, Zhang G, Ding J, Li Y (2010) Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci B 11(9):702–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Wang W, Zhou B, Zhang T (2006) Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet 112(8):1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Chen X, Hong Y, Liang X, Dang P, Brenneman T, Holbrook C, Culbreath A (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics. doi:10.1155/2009/715605

    PubMed  PubMed Central  Google Scholar 

  • Gutiérrez JP, Goyache F (2005) A note on ENDOG: a computer program for analysing pedigree information. J Anim Breed Genet 122(3):172–176

    Article  PubMed  Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics, 2nd edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97(2):143–149

    Article  CAS  Google Scholar 

  • He G, Meng R, Gao H, Guo B, Gao G, Newman M, Pittman RN, Prakash CS (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142(1–2):131–136

    Article  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9(9):868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WG, Cipriani G, Morgante M, Testolin R (1998) Microsatellite DNA in Actinidia chinensis: isolation, characterisation, and homology in related species. Theor Appl Genet 97(8):1269–1278

    Article  CAS  Google Scholar 

  • Jena SN, Srivastava A, Rai KM, Ranjan A, Singh SK, Nisar T, Srivastava M, Bag SK, Mantri S, Asif MH, Yadav HK, Tuli R, Sawant SV et al (2012) Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.). Theor Appl Genet 124(3):565–576

    Article  CAS  PubMed  Google Scholar 

  • Jiang HF, Ren X-P, Zhang XJ, Huang JQ, Lei Y, Yan L-Y, Liao B-S, Upadhyaya HD, Holbrook CC (2010) Comparison of genetic diversity based on SSR markers between peanut mini core collections from China and ICRISAT. Acta Agron Sin 36(7):1084–1091

    Article  CAS  Google Scholar 

  • Jung S, Abbott A, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genomics 5(3):136–143

    Article  CAS  PubMed  Google Scholar 

  • Kantety RV, Rota ML, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 4(5–6):501–510

    Article  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81(5):565–570

    Article  CAS  PubMed  Google Scholar 

  • Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30:125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Sci 47(4):1718–1727

    Article  CAS  Google Scholar 

  • La Rota L, Mauricio Kantety RV, Yu JK, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genom 6(1):23

    Article  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. In: Evolutionary biology. Springer, US, pp 381–398

  • Li YH, Li W, Zhang C, Yang L, Chang RZ, Gaut BS, Qiu LJ (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol 188(1):242–253

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 9(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109(2):361–369

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li W, Wu Y, Chen C, Lei J (2013) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS One 8(1):e48156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Phong DT, Upadhyaya HD, Chandra S, Crouch JH (2006) SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica 152(3):317–330

    Article  Google Scholar 

  • Macedo SE, Moretzsohn MC, Leal-Bertioli SCM, Alves DMT, Gouvea EG, Azevedo VCR, Bertioli DJ (2012) Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Res Notes 5(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyao A, Zhong HS, Monna L, Yano M, Yamamoto K, Havukkala I, Takuji Minobe Y, Sasaki T (1996) Characterization and genetic mapping of simple sequence repeats in the rice genome. DNA Res 3(4):233–238

    Article  CAS  PubMed  Google Scholar 

  • Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Cristiane Teixeira C, Leal-Bertioli SCM, Guimarães PM, Pereira RW (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19(2):153–170

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy PI, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109(4):800–805

    Article  CAS  PubMed  Google Scholar 

  • Nigam SN (2000) Some strategic issues in breeding for high and stable yield in groundnut in India. J Oilseed Res 17(1):1–10

    Google Scholar 

  • Patzak J, Paprštein F, Henychová A, Sedlák J (2012) Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus × domestica) genetic resources. Genome 55(9):647–665

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15(10):1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124(4):653–664

    Article  PubMed  Google Scholar 

  • Rajput SG, Plyler-Harveson T, Santra DK (2014) Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 5(1):175

    Article  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A (2000) A simple sequence repeat-based linkage map of barley. Genetics 156(4):1997–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc version 2.0. Numerical taxonomy and multivariate analysis system. Exeter software, Setauket, New York

  • Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics methods and protocols. Humana Press, New York, pp 365–386

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100(5):723–726

    Article  CAS  Google Scholar 

  • Seijo G, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94(12):1963–1971

    Article  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois, Urbana, pp 3–24

    Google Scholar 

  • Sim SC, Yu JK, Jo Y, Sorrells ME, Jung G (2009) Transferability of cereal EST-SSR markers to ryegrass. Genome 52(5):431–437

    Article  CAS  PubMed  Google Scholar 

  • Singh KP, Raina SN, Singh AK (1996) Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39(5):890–897

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109(1):122–128

    Article  CAS  PubMed  Google Scholar 

  • Stalker HT, Moss JP (1987) Speciation, cytogenetics, and utilization of Arachis species. Adv Agron 41:1–40

    Article  Google Scholar 

  • Subramanian V, Gurtu S, Rao RCN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43(4):656–660

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422

    CAS  PubMed  Google Scholar 

  • Tshilenge-Lukanda L, Nkongolo KKC, Kalonji-Mbuyi A (2012) Epidemiology of the groundnut (Arachis hypogaea L.) leaf spot disease: genetic analysis and developmental cycles. Am J Plant Sci 3:582–588

    Article  Google Scholar 

  • Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7(2A):537–546

    CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118(4):729–739

    Article  CAS  PubMed  Google Scholar 

  • Vásquez A, López C (2014) In silico genome comparison and distribution analysis of simple sequences repeats in Cassava. Int J Genomics. doi:10.1155/2014/471461

    PubMed  PubMed Central  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo X (2007) Development and characterization of EST-SSR markers in the eastern oyster Crassostrea virginica. Mar Biotechnol 9(4):500–511

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Pittman RN, Stalker HT, Holbrook CC, Pederson GA (2011) Population structure and marker–trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet 123(8):1307–1317

    Article  PubMed  Google Scholar 

  • Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 1:235–254

    Article  Google Scholar 

  • Williams DE, Eisenman J, Baird A, Rauch C, Ness KV, March CJ, Park LS, Martin U, Mochizukl DY, Boswell HS (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63(1):167–174

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Sui Y, Chang FQ, Xu Y, Ma RC (2006) SSR allelic variation in almond (Prunus dulcis Mill.). Theor Appl Genet 112(2):366–372

    Article  CAS  PubMed  Google Scholar 

  • Yap IV, Nelson RJ (1996) Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. International Rice Research Institute, Manila, pp 1–22

    Google Scholar 

  • Yu SL (2010) Peanut varieties and their pedigree in China. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  • Yu SL (2011) Peanut genetics and breeding in China. Shanghai Scientific and Technology Press, Shanghai

    Google Scholar 

  • Yüksel B, Paterson AH (2005) Construction and characterization of a peanut HindIII BAC library. Theor Appl Genet 111(4):630–639

    Article  PubMed  Google Scholar 

  • Zhang P, Li P, Li X, Liu X, Zhao X, Lu Y (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6(12):e27565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Chung JW, Ma KH, Kim TS, Kim SM, Shin DI, Kim CH, Koo HM, Park YJ (2009) Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Genes Genomics 31(4):283–292

    Article  CAS  Google Scholar 

  • Zhao W, Lee GA, Kwon SW, Ma KH, Lee MC, Park YJ (2012) Development and use of novel SSR markers for molecular genetic diversity in Italian millet (Setaria italic L.). Genes Genomics 34(1):51–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Vice Chancellor, OUAT, Bhubaneswar, Odisha, for providing facilities to carry out this work; the SSR analysis bioinformatics team of CSIR-National Botanical Research Institute, Lucknow, for their rapid support; Vice Chancellor, Utkal University, Odisha, for his support extended to our collaborators.

Author contributions

Sushree Shivani Sardar was involved in collections of plant materials and breeding lines, DNA isolation and SSR genotyping. Kedareswar Pradhan coordinated collections of plant materials and breeding lines, DNA isolation, SSR genotyping and manuscript drafting. Ravi Prakash Shukla designed EST-SSRs primers and their comparison with existing public domain database. Ribha Saraswat was involved in peanut public domain data search and analysis for unutilized ESTs, designing of EST-SSRs and their primers. Anukool Srivastava was involved in repeat motif analysis and their frequency and comparison of EST–SSRs with existing public domain database and novelty of EST-SSRs. Satya Narayan Jena coordinated designing EST-SSRs, their primers, redundancy check, analysis for genetic relationship and population structuring pattern among breeding line and cultivars with SSRs and manuscript writing. Anath Bandhu Das was involved in amplification of EST-SSRs and their sequencing for number of repeat motif analysis, novel EST-SSRs annotation and cross-transferability analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kedareswar Pradhan or Satya Narayan Jena.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standard

Authors have followed the ethical standards while preparing the present manuscript resulting from their investigations.

Additional information

Dr. Kedareswar Pradhan and Dr. Satya Narayan Jena have agreed to be shared corresponding authors as both have designed and coordinated work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental table S1

Details of number of public domain ESTs, utilized ESTs and studied ESTs (DOCX 14 kb)

Supplemental table S2

Frequencies of different subclasses of EST-SSRs measured in repeat number of count (DOCX 22 kb)

Supplemental figure S3

Frequencies of different subclasses of EST-SSRs found in 26,685 unutilized ESTs of Arachis (PPTX 74 kb)

Supplemental table S4

Details of protein homology search with NR database (XLSX 41 kb)

Supplemental table S5

Details of protein homology search with TAIR database (XLSX 63 kb)

Supplemental table S6

Unmatched SSR IDs with references to whole sequence, primer sequence and flanking region searches (XLSX 86 kb)

Supplemental table S7

Venn diagram of novel search of 1160 EST-SSRs with reference to whole sequence, primer sequence and 50-bp 3′ and 5′ flanking regions with public domain database (PPTX 94 kb)

Supplemental table S8

Details of non-redundant EST-SSRs, their primer pairs, EST sources, GenBank ID, repeat motif, Tm and expected size (XLSX 123 kb)

Supplemental table S9

Details of validation of 30 EST-SSRs with eight parental genotypes of Arachis of Odisha state (XLSX 18 kb)

Supplemental table S10

Allele-size data of 30 validated EST-SSRs in 40 genotypes/advanced breeding lines of peanut (XLSX 25 kb)

Supplemental table S11

Multiple alignment of size-variant fragments amplified from two peanut parents and advanced breeding lines for EST-SSR marker, NBRI RS 492, showing the presence of repeat motif (CT)n with seven units in both parents and ADBZ1, but six units in ADBY9, ADBY12, ADBY15, ADBY16, ADBZ3. The flanking region of EST-SSR revealed the presence of SNPs (PPTX 105 kb)

Supplemental table S12

Detailed pair-wise genetic distance of 40 cultivars/breeding lines of Arachis collected from Odisha state. (XLSX 52 kb)

Supplemental table S13

Population structure of 40 genotypes/advanced breeding lines estimated from 30 EST-SSRs using STRUCTURE program at K = 2 (PPTX 89 kb)

Supplemental table S14

Various values of ln′(K), |ln″(K)| and delta-K at different presumed K values in Evanno test (XLSX 11 kb)

Supplemental table S15

Principal coordinate analysis of 30 EST-SSRs profiles to resolve genetic relationships among the eight parents and 32 advanced breeding lines (PPTX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, S.S., Pradhan, K., Shukla, R.P. et al. In silico mining of EST-SSRs in Arachis hypogaea L. and their utilization for genetic structure and diversity analysis in cultivars/breeding lines in Odisha, India. Mol Breeding 36, 49 (2016). https://doi.org/10.1007/s11032-016-0466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0466-y

Keywords

Navigation