Skip to main content
Log in

SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cultivated groundnut (Arachis hypogaea L.) is an agronomically and economically important oilseed crop grown extensively throughout the semi-arid tropics of Asia, Africa and Latin America. Rust (Puccinia arachidis) and late leaf spot (LLS, Phaseoisariopsis personata) are among the major diseases causing significant yield loss in groundnut. The development of varieties with high levels of resistance has been constrained by adaptation of disease isolates to resistance sources and incomplete resistance in resistant sources. Despite the wide range of morphological diversity observed in the cultivated groundnut gene pool, molecular marker analyses have thus far been unable to detect a parallel level of genetic diversity. However, the recent development of simple sequence repeat (SSR) markers presents new opportunities for molecular diversity analysis of cultivate groundnut. The current study was conducted to identify diverse disease resistant germplasm for the development of mapping populations and for their introduction into breeding programs. Twenty-three SSRs were screened across 22 groundnut genotypes with differing levels of resistance to rust and LLS. Overall, 135 alleles across 23 loci were observed in the 22 genotypes screened. Twelve of the 23 SSRs (52%) showed a high level of polymorphism, with PIC values ≥0.5. This is the first report detecting such high levels of genetic polymorphism in cultivated groundnut. Multi-dimensional scaling and cluster analyses revealed three well-separated groups of genotypes. Locus by locus AMOVA and Kruskal–Wallis one-way ANOVA identified candidate SSR loci that may be valuable for mapping rust and LLS resistance. The molecular diversity analysis presented here provides valuable information for groundnut breeders designing strategies for incorporating and pyramiding rust and late leaf spot resistances and for molecular biologists wishing to create recombinant inbred line populations to map these traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    CAS  PubMed  Google Scholar 

  • Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  PubMed  CAS  Google Scholar 

  • Bromfield KR, Bailey WK (1972) Inheritance of resistance to Puccinia arachidis in peanut. Phytopath 62:748

    Google Scholar 

  • Burow MD, Simpson CE, Starr JL, Pateron AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    PubMed  CAS  Google Scholar 

  • Crouch JH, Crouch HK, Constandt H, Van Gysel A, Breyne P, Van Montagu M, Jarret RL, Ortiz R (1999) Comparison of PCR-based molecular marker analyses of Musa breeding populations. Mol Breed 5:233–244

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull 19:11–15

    Google Scholar 

  • Dwivedi SL, Gurtu S, Chandra S, Yuejin W, Nigam SN (2001) Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis. Plant Breed 120:345–349

    Article  CAS  Google Scholar 

  • Dwivedi SL, Crouch JH (2003) Proceedings of a Workshop for the Asian Development Bank supported project on molecular breeding of sorghum, groundnut and chickpea, ICRISAT:28–43

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • FAOSTAT (2004) Available at http://apps.fao.org/cgi-bin/nph-db.pl?subset = agriculture

  • Ferguson ME, Burow MD, Schultz SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2003) Microsatellite identification and characterization in peanut (A.␣hypogaea L.). Theor Appl Genet 108:1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Gimenes MA, Lopes CR, Valls JFM (2002) Genetic relationships among Arachis species based on AFLP. Genet Mol Biol 25(3):349–353

    Article  CAS  Google Scholar 

  • Halward TM, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    CAS  Google Scholar 

  • Halward TM, Stalker T, LaRue EA, Kochert G (1992) Use of single—primer DNA amplification in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18:315–325

    Article  PubMed  CAS  Google Scholar 

  • He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149

    Article  CAS  Google Scholar 

  • He G, Prakash CS (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using markers. Genet Resour Crop Evol 48:347–352

    Article  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3–9

    Article  PubMed  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Kolodny GM (1984) An improved method for increasing the resolution and sensitivity of silver staining of nucleic acid bands in polyacrylamide gels. Anal Biochem 138(1):66–67

    Article  PubMed  CAS  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage, Newbury Park

    Google Scholar 

  • Litt M, Lutty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeats within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    PubMed  CAS  Google Scholar 

  • Mace ES, Buhariwalla HK, Crouch JH (2003) A high throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459a–459h

    Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishma TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and markers-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Murty UR, Jahnavi MR (1983) Breeding potential of interspecific tetraploids in Arachis L. In: Cytogenetics of Arachis, ICRISAT, (1983) 125–130

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction end nucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nevill DJ (1981) Components of resistance to Cercospora arachidicola and Cercosporidium personatum in groundnut. Ann Appl Biol 99:77–86

    Article  Google Scholar 

  • Panaud T, Chen OX, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    PubMed  CAS  Google Scholar 

  • Paramasivam K, Jayasekhar M, Rajasekharan R, Veerabadhiran P (1990) Inheritance of rust resistance in groundnut (Arachis hypogaea). Madras Agric J 77:50–52

    Google Scholar 

  • Pande S, Rao J, Dwivedi SL (2002) Components of resistance to late leaf spot caused by Phaeoisariopsis personata in inter-specific derivaties of groundnut. Indian Phytopathol 55(4):444–450

    Google Scholar 

  • Powell W, Mackray GC, Provan J (1996a) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996b) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA makers for soybean genotypes identification. Theor Appl Genet 90:43–48

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) Numerical taxonomy and multivariate analysis system. Applied Biostatistics Inc., New York

    Google Scholar 

  • Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Roessli D, Excoffier L (2000) Software for population genetics data analysis. Arlequin ver 2000

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial diseases: and update and appraisal. Information Bulletin No 50, ICRISAT

  • Singh AK, Smartt J, Simpson CE, Raina SN (1998) Genetic variation vis-à-vis molecular polymorphism in groundnut, Arachis hypogaea L. Genet Resour Crop Evol 45:119–126

    Article  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

    Article  CAS  Google Scholar 

  • Subramanian V, Gurtu S, Rao RCN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660

    Article  PubMed  CAS  Google Scholar 

  • Sun G, Bond M, Nass H, Martin R, Dong Z (2003) RAPD polymorphism in spring wheat cultivars and lines with different level of Fusarium resistance. Theor Appl Genet 106:1059–1067

    PubMed  CAS  Google Scholar 

  • Tiwari SP, Ghewande MP, Misra DP (1984) Inheritance of resistance to rust and late leaf spot in groundnut (Arachis hypogaea). J Cytol Genet 19:97–101

    Google Scholar 

  • Weir BS (1990) Genetic data analysis. Methods for discrete genetic data. Sinauer Associates, Inc., Sunderland. Mass. pp. 125

    Google Scholar 

  • Witcombe JR, Hash CT (2000) Resistance gene deployment strategies in cereal hybrids using marker- assisted selection: gene pyramiding, three-way hybrids␣and synthetic parent populations. Euphytica 112:175–186

    Article  Google Scholar 

  • Yap V, Nelson RJ (1996) Winboot: A program for performing bootstrap analysis of binary data determine the confidence limits of UPGMA—based dendrograms. IRRI, Manila 1099, Philippines

Download references

Acknowledgements

The authors gratefully acknowledge Mr. A. Gafoor for technical assistance, Mr. S. Hari Krishna for biometrical assistance, Dr. S.L. Dwivedi for selection of material, and Dr. M. Ferguson for early access to SSR markers. D.T. Phong carried out this research through a visiting scientist fellowship under the Asian Development Bank-funded project ‘Rapid Crop Improvement for Poor Farmers in the Semi-Arid Tropics of Asia’ (RETA 5945). Biotechnology research at ICRISAT is grateful for unrestricted grants from the governments of Japan, UK and EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Mace.

Additional information

E.S. Mace and D.T. Phong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mace, E.S., Phong, D.T., Upadhyaya, H.D. et al. SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica 152, 317–330 (2006). https://doi.org/10.1007/s10681-006-9218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9218-0

Keywords

Navigation