Skip to main content
Log in

Effect of the Initial Stress State on the Effective Properties of Piezocomposite

  • Published:
Mechanics of Composite Materials Aims and scope

A new numerical-analytical solution of the “effective modulus” problem of statistical mechanics of piezocomposites was obtained considering the presence of an initial stressed electromagnetic-elastic state of an irregular structure with ellipsoidal inhomogeneities. The Green function method for a homogeneous piezoelectromagnetic elastic medium was used. The new solution was validated by comparing with the known asymptotic solution for the case of an elastic laminate in the presence of an initial stress state in its layers. Results of numerical analysis of an influence of the initial stress state on the effective properties of elastic two-phase composites with layered, unidirectional-fibrous, and granular structures were presented. For a composite with spherical inclusions, the appearance of “induced” anisotropy at the macrolevel, owing to the presence of the initial stress state of the structure, was revealed. A numerical analysis of influence of the axisymmetric macrolevel initial stress state on the effective transversely isotropic electroelastic properties of a PZT-4/fluoroplastic composite with unidirectional piezoelectric fibers was presented. The effective characteristics of the piezocomposite significantly depending on the initial stress state were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. К. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford (1982).

    Google Scholar 

  2. A. N. Guz’, “On the determination of the reduced elastic constants of composite layered materials with initial stresses,” Report Academy of Sciences of the Ukrainian SSR, Ser. А., No. 3, 216-219 (1975).

  3. A. N. Guz’, Elastic Waves in Bodies with Initial Stresses. — Vol. 1 General Problems; Vol. 2. Dependencies of Propagation, Naukova Dumka, Kiev (1986).

  4. V. V. Alekhin, B. D. Aninin, and A. G. Kolpakov, Synthesis of Layered Materials and Structures [in Russian], Institute of Hydrodynamics Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1988).

    Google Scholar 

  5. S. D. Akbarov and M. S. Guliev, “Axisymmetric longitudinal wave propagation in a finite prestretched compound circular cylinder made of incompressible materials,” Int. Appl. Mech., 45, No. 10, 1141-1151 (2009).

    Article  Google Scholar 

  6. S. D. Akbarov, “Recent investigations on dynamic problems for an elastic body with initial (residual) stresses,” Int. Appl. Mech., 43, No. 12, 1305-1324 (2007).

    Article  Google Scholar 

  7. S. D. Akbarov, Stability Loss and Buckling Delamination: Three-dimensional Linearized Approach for Elastic and Viscoelastic Composites, Springer (2013).

  8. M. S. Guliev, A. I. Seifulaev, and D. N. Abdulaeva, “Investigation of the distribution of elastic waves in the composite cylinder with the initial torsion,” Struct. Mech. Eng. Construct. and Buildings, No. 5, 404-413 (2018).

  9. T. I. Belyankova and V. V. Kalinchuk, “Properties of prestressed isotropic materials Ttking into account higher-order elastic moduli,” Sci. in the South of Russia, No. 2, 3-12 (2017).

  10. A. N. Guz’, “On the ultrasonic non-destructive method for determining stresses in structural elements and in near-surface layers of materials: focus on Ukrainian research (Review),” Appl. Mech., 50, No. 3, 3-30 (2014).

    Google Scholar 

  11. G. G. Kuliev and M. D. Jabbarov, “To elastic waves propagation in strained nonlinear anisotropic media,” Proc. Sci. Earth Acad. Sci. Azerbaijan, No. 2, 103-112 (1998).

  12. A. N. Guz’ Fundamentals of the Three-dimensional theory of Stability of Deformable Bodies, Springer (1999).

  13. S. D. Akbarov, Dynamics of Pre-strained Bi-material Elastic Systems: Linearized Three-dimensional Approach, Springer (2016).

  14. S. Gupta, D. K. Majhi, S. Kundu, and S. K. Vishwakarma, “Propagation of torsional surface waves in a homogeneous layer of finite thickness over an initially stressed heterogeneous half-space,” Appl. Math. Comput., 218, No. 9, 5655-5664 (2012).

    Google Scholar 

  15. W. T. Hu and W. Y. Chen, “Influence of lateral initial pressure on axisymmetric wave propagation in hollow cylinder based on first power hypo-elastic model,” J. Central South Univ., 21, No. 2, 753-760 (2014).

    Article  CAS  Google Scholar 

  16. U. B. Yesil, “Forced and natural vibrations of an orthotropic pre—stressed rectangular plate with neighboring two cylindrical cavities,” Comput. Mater. Continua, 53, No. 1, 1-22 (2017).

    Google Scholar 

  17. A. G. Kolpakov, “Effect of influation of initial stresses on the homogenized characteristics of composite,” Mech. Mater., 37, No. 8, 840-854 (2005).

    Article  Google Scholar 

  18. A. G. Kolpakov, “On the dependence of the velocity of elastic waves in composite media on initial stresses,” Comput. Struct., 44, Nos. 1-2, 97-101 (1992).

    Article  Google Scholar 

  19. A. G. Kolpakov, “Averaged characteristics of stressed laminated media,” J. Eng. Phys., 68, No. 5, 605-613 (1995).

    Google Scholar 

  20. A. G. Kolpakov, Averaged models of elastic composite materials and members of structures [in Russian], Dissertation ... Dr. Phys.-Math. Sci.: 01.02.04. — Novosibirsk, (2002).

  21. A. A. Pan’kov, A. N. Anoshkin, P. V. Pisarev, and S. R. Bayandin, “Using an electromechanical analogy to describe the damping characteristics of an MFC actuator,” IOP Conf. Ser: Mater. Sci. Eng., 1093-012023, 1-6 (2021).

  22. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Publ. House of Moscow Univer., Moscow (1984).

    Google Scholar 

  23. E. I. Grigolyuk and L. A. Fil’shtinskii Perforated Plates and Shells [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  24. S. D. Volkov and V. P. Stavrov, Statistical Mechanics of Composite Materials [in Russian], Publish. House Belarussian Univer., Minsk (1978).

    Google Scholar 

  25. T. D. Shermergor, Theory of Elasticity of Microheterogeneous [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  26. L. P. Khoroshun, B. P. Maslov, and P. V. Leschenko, Prediction of Effective Properties of Piezoactive Composite Materials [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  27. A. A. Pan’kov, Statistical Mechanics of Piezocomposites [in Russian], Publish. House Perm State Tech. Univer., Perm (2009).

  28. A. A. Pan’kov, “Electromagnetic coupling factors for a composite and piezoactive phases,” Physical Mesomechanics, 14, No. 2, 93-99 (2011).

    Google Scholar 

  29. X. Guo and P. Wei, “Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses,” Ultrasonics, 66, 72-85 (2016).

    Article  Google Scholar 

  30. A. Dasdemir, “Forced vibrations of pre-stressed sandwich plate-strip with elastic layers and piezoelectric core,” Int. Appl. Mech., 54, No. 4, 480-493 (2018).

    Article  Google Scholar 

  31. D. Berlinkur, D. Kerran, and G. Jaffe, “Piezoelectric and piezomagnetic materials and their application in tranducers,” in: Physical Acoustics. Vol. 1: Methods and devices of ultrasonic investigations. Part A, Mir, Moscow (1966).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pan’kov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 58, No. 5, pp. 1049-1068, September-October, 2022. Russian DOI: https://doi.org/10.22364/mkm.58.5.11.

Appendix

Appendix

Tensor components \( \overline{\textbf{A}}, \) \( \overline{\textbf{B}}, \) ⋯, and \( {\overline{\textbf{T}}}^{(2)} \) are the solutions of four independent systems of linear algebraic equations

$$ {\displaystyle \begin{array}{c}{a}_{ijk s}^{\left(1,1\right)}{\overline{A}}_{ksmn}+{a}_{ijk}^{\left(1,2\right)}{\overline{F}}_{kmn}^{(1)}+{a}_{ijk}^{\left(1,3\right)}{\overline{F}}_{kmn}^{(2)}={b}_{ijmn}^{(1)},\\ {}{a}_{ik s}^{\left(2,1\right)}{\overline{A}}_{ksmn}+{a}_{ik}^{\left(2,2\right)}{\overline{F}}_{kmn}^{(1)}+{a}_{ik}^{\left(2,3\right)}{\overline{F}}_{kmn}^{(2)}={b}_{imn}^{(2)},\\ {}{a}_{ik s}^{\left(3,1\right)}{\overline{A}}_{ksmn}+{a}_{ik}^{\left(3,2\right)}{\overline{F}}_{kmn}^{(1)}+{a}_{ik}^{\left(3,3\right)}{\overline{F}}_{kmn}^{(2)}={b}_{imn}^{(3)},\\ {}{a}_{ijk s}^{\left(1,1\right)}{\overline{B}}_{ksn}+{a}_{ik d}^{\left(1,2\right)}{\overline{H}}_{dn}^{(1)}+{a}_{ik d}^{\left(1,3\right)}{\overline{H}}_{dn}^{(2)}={c}_{ijn}^{(1)},\end{array}} $$
(A1)
$$ {\displaystyle \begin{array}{c}{a}_{ik s}^{\left(2,1\right)}{\overline{B}}_{ksn}+{a}_{ik}^{\left(2,2\right)}{\overline{H}}_{kn}^{(1)}+{a}_{ik}^{\left(2,3\right)}{\overline{H}}_{kn}^{(2)}={c}_{in}^{(2)},\\ {}{a}_{ik s}^{\left(3,1\right)}{\overline{B}}_{ksn}+{a}_{ik}^{\left(3,2\right)}{\overline{H}}_{kn}^{(1)}+{a}_{ik}^{\left(3,3\right)}{\overline{H}}_{kn}^{(2)}={c}_{in}^{(3)},\\ {}{a}_{ijks}^{\left(1,1\right)}{\overline{D}}_{ksn}+{a}_{ik d}^{\left(1,2\right)}{\overline{M}}_{dn}^{(1)}+{a}_{ik d}^{\left(1,3\right)}{\overline{M}}_{dn}^{(2)}={d}_{ijn}^{(1)},\end{array}} $$
(A2)
$$ {\displaystyle \begin{array}{c}{a}_{ik s}^{\left(2,1\right)}{\overline{D}}_{ks n}+{a}_{ik}^{\left(2,2\right)}{\overline{M}}_{kn}^{(1)}+{a}_{ik}^{\left(2,3\right)}{\overline{M}}_{kn}^{(2)}={d}_{in}^{(2)},\\ {}{a}_{ik s}^{\left(3,1\right)}{\overline{D}}_{ks n}+{a}_{ik}^{\left(3,2\right)}{\overline{M}}_{kn}^{(1)}+{a}_{ik}^{\left(3,3\right)}{\overline{M}}_{kn}^{(2)}={d}_{in}^{(3)},\\ {}{a}_{ij ks}^{\left(1,1\right)}{\overline{T}}_{ks}+{a}_{ij d}^{\left(1,2\right)}{\overline{T}}_d^{(1)}+{a}_{ij d}^{\left(1,3\right)}{\overline{T}}_d^{(2)}={f}_{ij}^{(1)},\end{array}} $$
(A3)
$$ {\displaystyle \begin{array}{c}{a}_{ik s}^{\left(2,1\right)}{\overline{T}}_{ks}+{a}_{ik}^{\left(2,2\right)}{\overline{T}}_k^{(1)}+{a}_{ik}^{\left(2,3\right)}{\overline{T}}_k^{(2)}={f}_i^{(2)},\\ {}{a}_{ik s}^{\left(3,1\right)}{\overline{T}}_{ks}+{a}_{ik}^{\left(3,2\right)}{\overline{T}}_k^{(1)}+{a}_{ik}^{\left(3,3\right)}{\overline{T}}_k^{(2)}={f}_i^{(3)},\end{array}} $$
(A4)

with the coefficients

$$ {\displaystyle \begin{array}{c}{a}_{ik s}^{\left(1,1\right)}={\delta}_{ik}{\delta}_{js}-{U}_{ijd b}^s\left[{\overset{\sim }{C}}_{dbks}+{\delta}_{dk}{\sigma}_{bs}^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{C}}_{dbks}+{\delta}_{dk}{\overline{\sigma}}_{bs}^0\right)\right]\\ {}-{U}_{ijd}^{s(1)}\left[\tilde{e}_{dk s}+{\delta}_{dk}{D}_s^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{e}}_{dk s}+{\delta}_{dk}{\overline{D}}_s^0\right)\right]\\ {}-{U}_{ijd}^{s(2)}\left[\tilde{h}_{dk s}+{\delta}_{dk}{B}_s^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{h}}_{dk s}+{\delta}_{dk}{\overline{B}}_s^0\right)\right],\\ {}{a}_{ijk}^{\left(1,2\right)}={U}_{ijd b}^s\left[\tilde{e}_{kdb}+\left(1-2{v}_1\right){\overline{e}}_{kdb}\right]-{U}_{ijd}^{s(1)}\left[{\overset{\sim }{\lambda}}_{dk}+\left(1-2{v}_1\right){\overline{\lambda}}_{dk}\right],\\ {}{a}_{ijk}^{\left(1,3\right)}={U}_{ijd b}^s\left[\tilde{h}_{kdb}+\left(1-2{v}_1\right){\overline{h}}_{kdb}\right]-{U}_{ijd}^{s(2)}\left[{\overset{\sim }{\mu}}_{dk}+\left(1-2{v}_1\right){\overline{\mu}}_{dk}\right],\\ {}{a}_{ik s}^{\left(2,1\right)}=-{\varPhi}_{id b}^s\left[{\overset{\sim }{C}}_{dbks}+{\delta}_{dk}{\sigma}_{bs}^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{C}}_{dbks}+{\delta}_{dk}{\overline{\sigma}}_{bs}^0\right)\right]\\ {}-{\varPhi}_{id}^{s(1)}\left[\tilde{e}_{dk s}+{\delta}_{dk}{D}_s^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{e}}_{dk s}+{\delta}_{dk}{\overline{D}}_s^0\right)\right]\\ {}-{\varPhi}_{id}^{s(2)}\left[\tilde{h}_{dk s}+{\delta}_{dk}{B}_s^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{h}}_{dk s}+{\delta}_{dk}{\overline{B}}_s^0\right)\right],\\ {}{a}_{ik}^{\left(2,2\right)}=-{\delta}_{ik}+{\varPhi}_{id b}^s\left[\tilde{e}_{kdb}+\left(1-2{v}_1\right){\overline{e}}_{kdb}\right]-{\varPhi}_{id}^{s(1)}\left[{\overset{\sim }{\lambda}}_{dk}+\left(1-2{v}_1\right){\overline{\lambda}}_{dk}\right],\\ {}{a}_{ik}^{\left(2,3\right)}={\varPhi}_{id b}^s\left[\tilde{h}_{kdb}+\left(1-2{v}_1\right){\overline{h}}_{kdb}\right]-{\varPhi}_{id}^{s(2)}\left[{\overset{\sim }{\mu}}_{dk}+\left(1-2{v}_1\right){\overline{\mu}}_{dk}\right],\\ {}{a}_{ik s}^{\left(3,1\right)}=-{\varPsi}_{id b}^s\left[{\overset{\sim }{C}}_{dbks}+{\delta}_{dk}{\sigma}_{bs}^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{C}}_{dbks}+{\delta}_{dk}{\overline{\sigma}}_{bs}^0\right)\right],\\ {}-{\varPsi}_{id}^{s(1)}\left[\tilde{e}_{dk s}+{\delta}_{dk}{D}_s^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{e}}_{dk s}+{\delta}_{dk}{\overline{D}}_s^0\right)\right]\\ {}-{\varPsi}_{id}^{s(2)}\left[\tilde{h}_{dk s}+{\delta}_{dk}{B}_s^{\ast 0}+\left(1-2{v}_1\right)\left({\overline{h}}_{dk s}+{\delta}_{dk}{\overline{B}}_s^0\right)\right],\\ {}{a}_{ik}^{\left(3,2\right)}={\varPsi}_{id b}^s\left[\tilde{e}_{kdb}+\left(1-2{v}_1\right){\overline{e}}_{kdb}\right]-{\varPsi}_{id}^{s(1)}\left[{\overset{\sim }{\lambda}}_{dk}+\left(1-2{v}_1\right){\overline{\lambda}}_{dk}\right],\\ {}{a}_{ik}^{\left(3,3\right)}=-{\delta}_{ik}+{\varPsi}_{id b}^s\left[\tilde{h}_{kdb}+\left(1-2{v}_1\right){\overline{h}}_{kdb}\right]-{\varPsi}_{id}^{s(2)}\left[{\overset{\sim }{\mu}}_{dk}+\left(1-2{v}_1\right){\overline{\mu}}_{dk}\right],\end{array}} $$

the right parts of the 1st system of equations (A1)

$$ {\displaystyle \begin{array}{c}{b}_{ijmn}^{(1)}={U}_{ijk s}^s{\overline{C}}_{ksmn}+{U}_{ijk}^{s(1)}\left({\overline{e}}_{km n}+{\delta}_{km}{\overline{D}}_n^0\right)+{U}_{ijk}^{s(1)}\left({\overline{h}}_{km n}+{\delta}_{km}{\overline{B}}_n^0\right),\\ {}{b}_{imn}^{(2)}={\varPhi}_{ik s}^s{\overline{C}}_{ksmn}+{\varPhi}_{ik}^{s(1)}\left({\overline{e}}_{km n}+{\delta}_{km}{\overline{D}}_n^0\right)+{\varPhi}_{ik}^{s(2)}\left({\overline{h}}_{km n}+{\delta}_{km}{\overline{B}}_n^0\right),\\ {}{b}_{imn}^{(3)}={\varPsi}_{ik s}^s{\overline{C}}_{ksmn}+{\varPsi}_{ik}^{s(1)}\left({\overline{e}}_{km n}+{\delta}_{km}{\overline{D}}_n^0\right)+{\varPsi}_{ik}^{s(2)}\left({\overline{h}}_{km n}+{\delta}_{km}{\overline{B}}_n^0\right)\end{array}} $$

for the 2nd and 3rd systems of equations (A2), (A3)

$$ {\displaystyle \begin{array}{c}{c}_{ijn}^{(1)}=-{U}_{ijk s}^s{\overline{e}}_{ksmn}+{U}_{ijk}^{s(1)}{\overline{\lambda}}_{kn},\kern1em {c}_{in}^{(2)}=-{\varPhi}_{ijk s}^s{\overline{e}}_{nks}+{\varPhi}_{ik}^{s(1)}{\overline{\lambda}}_{kn},\\ {}{c}_{in}^{(3)}=-{\varPsi}_{ik s}^s{\overline{e}}_{nks}+{\varPsi}_{ik}^{s(1)}{\overline{\lambda}}_{kn},\kern1em {d}_{ijn}^{(1)}=-{U}_{ijk s}^s{\overline{h}}_{nks}+{U}_{ijk}^{s(2)}{\overline{\mu}}_{kn},\\ {}{d}_{in}^{(2)}=-{\varPhi}_{ik s}^s{\overline{h}}_{nks}+{\varPhi}_{ik}^{s(2)}{\overline{\mu}}_{kn},\kern1em {d}_{in}^{(3)}=-{\varPsi}_{ik s}^s{\overline{h}}_{nks}+{\varPsi}_{ik}^{s(2)}{\overline{\mu}}_{kn}\end{array}} $$

and for the 4th system of equations (A4)

$$ {\displaystyle \begin{array}{c}{f}_{ij}^{(1)}=-{U}_{ij k s}^s{\overline{\beta}}_{ks}+{U}_{ij k}^{s(1)}{\overline{\pi}}_k+{U}_{ij k}^{s(2)}\overline{\vartheta},\\ {}{f}_i^{(2)}=-{\varPhi}_{ik s}^s{\overline{\beta}}_{ks}+{\varPhi}_{ik}^{s(1)}{\overline{\pi}}_k+{\varPhi}_{ik}^{s(2)}{\overline{\vartheta}}_k,\\ {}{f}_i^{(3)}=-{\varPsi}_{ik s}^s{\overline{\beta}}_{ks}+{\varPsi}_{ik}^{s(1)}{\overline{\pi}}_k+{\varPsi}_{ik}^{s(2)}{\overline{\vartheta}}_k\end{array}} $$

to calculate the sought-for values \( \overline{\textbf{A}}, \) \( {\overline{\textbf{F}}}^{(1)}, \) ⋯, and \( {\overline{\textbf{T}}}^{(2)} \) taking into account the designations of singular components Gs (see Eqs. 13)), difference tensors \( \tilde{\textbf{C}}, \) \( \overline{\textbf{C}}, \) \( {\overline{\sigma}}^0, \) ⋯,(see Eqs. (10) and (18)).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan’kov, A.A. Effect of the Initial Stress State on the Effective Properties of Piezocomposite. Mech Compos Mater 58, 733–746 (2022). https://doi.org/10.1007/s11029-022-10063-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-10063-w

Keywords

Navigation