Skip to main content
Log in

Indentation analysis of coating structure based on parabolic concave indenter contact

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The development trend of functional materials and devices from block to thin film is inevitable. The elastic field of coating structure loaded with concave indenter is studied in this paper. Based on the mirror method and potential theory method, the analytical solutions of the elastic field of coating structure loaded with parabolic concave indenter are obtained. The convergence problem caused by the mirror image method is analyzed. The displacements and stresses with explicit formulation in the coating/substrate are obtained. The stress distribution inside the coating and at the interface is explored. The influence of coating thickness on interfacial stresses and the problem of the interface failure are discussed. The solution is degraded to the existing theory by numerical method for verifying its accuracy, where let the contact radius approach zero for approximating to Green's function of coated structure. The analytical solution given in this paper is expressed as elemental functions, which is convenient for further application. It can used as a benchmark for other solution for indentation contact problem of coating structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahsan A, Mousavi FS, Popova O, Nijs T, Nowakowska SK, Baljozovic M, Pasti IA, Morari C, Iarinca L, Hill JP, Liu SX, Decurtins S, Thilgen C, Gade L, Lobo Checa J, Diederich F, Stoehr M, Jung TA (2021) Supramolecular architecturing of quantum box arrays from functionalized porphyrins and exploring their quantum states. ECS Meet Abstr 16:777–777

    Article  Google Scholar 

  2. Ligler FS, White HS (2013) Nanomaterials in analytical chemistry. analytical. Chemistry 85(23):11161–11162

    Google Scholar 

  3. Gibbs JW (1878) On the equilibrium of heterogeneous substances. Am J Sci 16(s3-96):441

    Article  MATH  Google Scholar 

  4. Vyazovkin S (2006) Model-free kinetics. J Therm Anal Calorim 83(1):45–51

    Article  Google Scholar 

  5. Hou PF, Zhang WH, Chen J-Y (2019) Three-dimensional exact solutions of homogeneous transversely isotropic coated structures under spherical contact. Int J Solids Struct 161:136–173

    Article  Google Scholar 

  6. Hou PF, Zhang WH, Tang JP, Chen JY (2019) Three-dimensional exact solutions of elastic transversely isotropic coated structures under conical contact. Surf Coat Technol 369:280–310

    Article  Google Scholar 

  7. Cheng Y-T, Cheng C-M (1999) Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters? J Mater Res 14(9):3493–3496

    Article  Google Scholar 

  8. Chen FL, He X, Prieto-Munoz PA, Yin HM (2015) Opening-mode fractures of a brittle coating bonded to an elasto-plastic substrate. Int J Plast 67:171–191

    Article  Google Scholar 

  9. Wang L, Liu XH, Li DC, Liu F, Jin ZM (2014) Contact mechanics studies of an ellipsoidal contact bearing surface of metal-on-metal hip prostheses under micro-lateralization. Med Eng Phys 36(4):419–424

    Article  Google Scholar 

  10. Zhuang JJ, Guo YQ, Xiang N, Xiong Y, Hu Q, Song RG (2015) A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte. Appl Surf Sci 357:1463–1471

    Article  Google Scholar 

  11. Deyab MA (2015) Effect of carbon nano-tubes on the corrosion resistance of alkyd coating immersed in sodium chloride solution. Prog Org Coat 85:146–150

    Article  Google Scholar 

  12. Shen WN, Feng LJ, Liu X, Luo H, Liu Z, Tong PR, Zhang WH (2016) Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying. Prog Org Coat 90:139–146

    Article  Google Scholar 

  13. Guan XY, Wang YX, Xue QJ, Wang LP (2015) Toward high load bearing capacity and corrosion resistance Cr/Cr2N nano-multilayer coatings against seawater attack. Surf Coat Technol 282:78–85

    Article  Google Scholar 

  14. Kumar UP, Kennady CJ, Zhou QY (2015) Effect of salicylaldehyde on microstructure and corrosion resistance of electrodeposited nanocrystalline Ni–W alloy coatings. Surf Coat Technol 283:148–155

    Article  Google Scholar 

  15. Krella AK, Sobczyk AT, Krupa A, Jaworek A (2016) Thermal resistance of Al2O3 coating produced by electrostatic spray deposition method. Mech Mater 98:120–133

    Article  Google Scholar 

  16. Su J, Song HX, Ke LL, Aizikovich SM (2021) The size-dependent elastohydrodynamic lubrication contact of a coated half-plane with non-Newtonian fluid. Appl Math Mech Engl Ed 42(7):915–930

    Article  MathSciNet  MATH  Google Scholar 

  17. Lv X, Ke L-L, Su J, Tian J-Y (2021) Axisymmetric contact vibration analysis of a rigid spherical punch on a piezoelectric half-space. Int J Solids Struct 210–211:224–236

    Article  Google Scholar 

  18. Wu F, Yu HY, Chen WQ (2013) Indentation responses of piezoelectric layered half-space. Smart Mater Struct 22(1)

  19. Zhao MH, Fan CY, Lu CS, Dang HY (2021) Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure. Appl Math Mech Engl Ed 42(11):1633–1648

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun Y, Wang WJ, Li BB, Liu MB (2015) Investigation on behavior of crack penetration/deflection at interfaces in intelligent coating system. Appl Math Mech Engl Ed 36(4):465–474

    Article  MathSciNet  Google Scholar 

  21. Li XY, Wu F, Jin X, Chen WQ (2015) 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. J Mech Phys Solids 75:1–44

    Article  MathSciNet  MATH  Google Scholar 

  22. Bhattacharyya AS (2016) Indentation of coatings at micro/nano scale: crack formation and deflection.

  23. Poon B, Rittel D, Ravichandran G (2008) An analysis of nanoindentation in linearly elastic solids. Int J Solids Struct 45(24):6018–6033

    Article  MATH  Google Scholar 

  24. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57

    Article  MathSciNet  MATH  Google Scholar 

  25. Hertz H (1882) On the contact of elastic solids. J Reine Angew Math 92(156):156–171

    Article  MathSciNet  MATH  Google Scholar 

  26. Jager A, Lackner R, Eberhardsteiner J (2007) Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42(3):293–306

    Article  MATH  Google Scholar 

  27. Hueber S, Matei A, Wohlmuth B (2013) A contact problem for electro-elastic materials. Zamm Z Fur Angew Math Und Mech 93(10–11):789–800

    Article  MathSciNet  MATH  Google Scholar 

  28. Guler MA, Adibnazari S, Alinia Y (2012) Tractive rolling contact mechanics of graded coatings. Int J Solids Struct 49(6):929–945

    Article  Google Scholar 

  29. Boussinesq MJ (1885) Application des potentiels: à l’étude de l’équilibre et du mouvement des solides élastiques. University of Michigan Library, Ann Arbor, Michigan

    MATH  Google Scholar 

  30. Sneddon IN (1948) Boussinesq’s problem for a rigid cone. Math Proc Cambridge Philos Soc 44(4):492–507

    Article  MathSciNet  MATH  Google Scholar 

  31. Hill R, Storakers B, Zdunek AB (1989) A Theoretical study of the Brinell hardness test. Proc R Soc A Math Phys Eng Sci 423(1865):301–330

    MATH  Google Scholar 

  32. Kral ER, Komvopoulos K, Bogy DB (1993) Elastic-plastic finite element analysis of repeated indentation of a half-space by a rigid sphere. J Appl Mech 60(4):829–841

    Article  Google Scholar 

  33. Laursen TA, Simo JC (1992) A study of the mechanics of microindentation using finite elements. J Mater Res 7(03):618–626

    Article  Google Scholar 

  34. Fischer-Cripps AC (2004) Nanoindentation. Springer, New York

    Book  Google Scholar 

  35. Tong HW, Fang TH, Lin YC (2007) A numerical study of factors affecting the characterization of nanoindentation on silicon. Mater Sci Eng Anal Bound Elem 447(1–2):244–253

    Google Scholar 

  36. Korsunsky AM, Constantinescu A (2006) Work of indentation approach to the analysis of hardness and modulus of thin coatings. Mater Sci Eng A Struct Mater Prop Microstruct Process A423(1/2):28–35

    Article  Google Scholar 

  37. Comez I (2015) Contact problem for a functionally graded layer indented by a moving punch. Int J Mech Sci 100:339–344

    Article  Google Scholar 

  38. Ke LL, Yang J, Kitipornchai S, Wang YS (2008) Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-plane under a rigid punch. Int J Solids Struct 45(11–12):3313–3333

    Article  MATH  Google Scholar 

  39. Goltsberg R, Etsion I (2016) Contact area and maximum equivalent stress in elastic spherical contact with thin hard coating. Tribol Int 93:289–296

    Article  Google Scholar 

  40. Paseuth A, Yamagata K, Miura A, Higuchi M, Tadanaga K (2017) Deposition and analysis of Al-Rich c-AlxTi1−xN coating with preferred orientation. J Am Ceram Soc 100(1):345–353

    Article  Google Scholar 

  41. Jin YL, Lu ZY, Yang R, Hou L, Chen YS (2018) A new nonlinear force model to replace the Hertzian contact model in a rigid-rotor ball bearing system. Appl Math Mech Engl Ed 39(3):365–378

    Article  MathSciNet  Google Scholar 

  42. Tian XJ, Zhou YT, Wang LH, Ding SH (2021) Surface contact behavior of functionally graded thermoelectric materials indented by a conducting punch. Appl Math Mech Engl Ed 42(5):649–664

    Article  MathSciNet  MATH  Google Scholar 

  43. Elliott HA, Mott NF (1948) Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math Proc Cambridge Philos Soc 44(4):522–533

    Article  MathSciNet  Google Scholar 

  44. Elliott HA (1949) Axial symmetric stress distributions in aeolotropic hexagonal crystals. The problem of the plane and related problems. In: Mathematical Proceedings of the Cambridge philosophical society 45(4) p 621–630

  45. Conway HD, Farnham KA, Ku TC (1967) The Indentation of a transversely isotropic half space by a rigid sphere. J Appl Mech 34(2):491–492

    Article  Google Scholar 

  46. Fabrikant V (1989) Applications of potential theory in mechanics. a selection of new results. Kluwer Academic Publishers, The Netherlands

    MATH  Google Scholar 

  47. Fabrikant V (1991) Mixed boundary value problems of potential theory and their applications in engineering. Kluwer Academic Publishers, The Netherlands

    MATH  Google Scholar 

  48. Hanson MT (1992) The elastic field for spherical hertzian contact including sliding friction for transverse isotropy. J Tribol 114(3):606–611

    Article  Google Scholar 

  49. Hanson MT (1992) The elastic field for conical indentation including sliding friction for transverse isotropy. J Appl Mech 59(2S):123–130

    Article  MATH  Google Scholar 

  50. Hanson MT (1994) The elastic field for an upright or tilted sliding circular flat punch on a transversely isotropic half space. Int J Solids Struct 31(4):567–586

    Article  MATH  Google Scholar 

  51. Hanson MT, Puja IW (1997) The elastic field resulting from elliptical hertzian contact of transversely isotropic bodies: closed-form solutions for normal and shear loading. J Appl Mech 64(3):457–465

    Article  MATH  Google Scholar 

  52. Chen WQ (2015) Some recent advances in 3D crack and contact analysis of elastic solids with transverse isotropy and multifield coupling. Acta Mech Sin 31(5):601–626

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu F, Li XY, Chen WQ, Kang GZ, Muller R (2018) Indentation on a transversely isotropic half-space of multiferroic composite medium with a circular contact region. Int J Eng Sci 123:236–289

    Article  MathSciNet  Google Scholar 

  54. Shang S-M, Hou P-F, Zhang W-H (2021) Three-dimensional overall stress analysis for double-coated structure with equal coating thickness. Mech Mater 158:103861

    Article  Google Scholar 

  55. Fabrikant VI (1989) Application of potential theory in mechanics: a selection of new results. Kluwer Academic Publishers, The Netherlands, p 467

    MATH  Google Scholar 

  56. Hou PF, Ding HJ, Chen JY (2005) Green’s functions for transversely isotropic magnetoelectroelastic media. Int J Eng Sci 43(10):826–858

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang ZY, Xu JQ (2007) The interface failure criterion of coating materials. J Shanghai Jiaotong Univ Chin Ed 41(6):983–987

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support from the National Natural Science Foundation of China (NO. 12102143), Natural Science Foundation of Guangzhou City (202201010217, 202201020539), and Young Talent Support Project of Guangzhou Association for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hua Zhang.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 The basic notations

The following equations are introduced to simplify notations:

$$\begin{aligned} z_{j} \,=\, & s_{j} z,\;z_{j}^{\prime } \,=\, s_{j}^{\prime } z,\;h_{j}^{\prime } \,=\, s_{j}^{\prime } h,\; \\ \overline{z}_{njk} \,=\, & z_{j} - h_{nk} ,\;\overline{R}_{njk} \,=\, \sqrt {r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\varphi - \varphi_{0} } \right) + \overline{z}_{njk}^{2} } , \\ z_{njk} \,=\, & z_{j} - h_{nk} ,\;R_{njk} \,=\, \sqrt {r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\varphi - \varphi_{0} } \right) + z_{njk}^{2} } \\ z_{njk}^{\prime } \,=\, & z_{i}^{\prime } - h_{nk} ,\;R^{\prime}_{njk} \,=\, \sqrt {r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\varphi - \varphi_{0} } \right) + z_{njk}^{\prime 2} } \\ \overline{R}_{njk}^{*} \,=\, & \overline{R}_{njk} - \overline{z}_{njk} ,\;R_{njk}^{*} \,=\, R_{njk} - z_{njk} ,\;\overline{R}_{njk}^{\prime *} \,=\, \overline{R}_{njk}^{\prime } - z_{njk}^{\prime } \\ l_{1njk} \,=\, & \frac{1}{2}\left[ {\sqrt {(r + a)^{2} + z_{njk}^{2} } - \sqrt {(r - a)^{2} + z_{njk}^{2} } } \right],\; \\ l_{2njk} \,=\, & \frac{1}{2}\left[ {\sqrt {(r + a)^{2} + z_{njk}^{2} } + \sqrt {(r - a)^{2} + z_{njk}^{2} } } \right],\; \\ \overline{l}_{1njk} \,=\, & \frac{1}{2}\left[ {\sqrt {(r + a)^{2} + \overline{z}_{njk}^{2} } - \sqrt {(r - a)^{2} + \overline{z}_{njk}^{2} } } \right],\; \\ \overline{l}_{2njk} \,=\, & \frac{1}{2}\left[ {\sqrt {(r + a)^{2} + \overline{z}_{njk}^{2} } + \sqrt {(r - a)^{2} + \overline{z}_{njk}^{2} } } \right],\; \\ l^{\prime}_{1njk} \,=\, & \frac{1}{2}\left[ {\sqrt {(r + a)^{2} + z_{njk}^{\prime 2} } - \sqrt {(r - a)^{2} + z_{njk}^{\prime 2} } } \right]{\kern 1pt} ,\; \\ l^{\prime}_{2njk} \,=\, & \frac{1}{2}\left[ {\sqrt {(r + a)^{2} + z_{njk}^{\prime 2} } + \sqrt {(r - a)^{2} + z_{njk}^{\prime 2} } } \right]{\kern 1pt} \\ \end{aligned}$$
(43a)

Equivalent relationships of \(z_{njk}\), \(\overline{z}_{njk}\), and \(z^{\prime}_{njk}\) when \(z = h\)

$$\begin{aligned} \overline{z}_{(n + 1)21} (h) = & h_{2} - (2n + 1)h_{1} ,\; \\ \overline{z}_{(n + 1)1(2n + 2)} (h) = & h_{1} - (2n + 1)h_{2} ,\; \\ z_{n11} (h) = & - \overline{z}_{(n + 1)11} (h) = - \overline{z}_{(n + 1)22} (h) = 2nh_{1} ,\; \\ z_{n2(2n)} (h) = & - \overline{z}_{(n + 1)1(2n + 1)} (h) = - \overline{z}_{(n + 1)2(2n + 2)} (h) = 2nh_{2} \\ z_{n1(m + 1)} (h) = & z_{n2m} (h) = - \overline{z}_{(n + 1)1(m + 1)} (h) = - \overline{z}_{(n + 1)2(m + 2)} (h) = (2n - m)h_{1} + mh_{2} \\ (\;n = & 1,2,\; \cdots ,\infty \;;\;m = 1,2, \cdots 2n - 1) \\ \end{aligned}$$
(43b)
$$\overline{z}_{njk} \left( 0 \right) = - z_{njk} \left( 0 \right) = z^{\prime}_{njk} \left( 0 \right) = - h_{nk} ,\,({\kern 1pt} {\kern 1pt} {\kern 1pt} n = 1,2, \cdots \;,\infty {\kern 1pt} ;{\kern 1pt} \;j = 1,2;\;{\kern 1pt} k = 1,2{\kern 1pt} ,{\kern 1pt} {\kern 1pt} \cdots \;,2n).$$
(43c)

1.2 The expressions for the solutions (21)(22)

The expressions \(f_{1i}\), \(\overline{f}_{1i}\), \(f^{\prime}_{1i}\) \(\left( {i = 1,2,3,4,5} \right)\):

$$\begin{aligned} f_{11} \left( {z_{njk} } \right) & = \frac{{2\pi e^{i\varphi } }}{r}\left( {a - \sqrt {a^{2} - l_{1njk}^{2} } } \right), \\ \overline{f}_{11} \left( {\overline{z}_{njk} } \right) & = \frac{{2\pi e^{i\varphi } }}{r}\left( {a - \sqrt {a^{2} - \overline{l}_{1njk}^{2} } } \right), \\ f_{11}^{\prime } \left( {z_{njk} } \right) & = \frac{{2\pi e^{i\varphi } }}{r}\left( {a - \sqrt {a^{2} - l_{1njk}^{\prime 2} } } \right), \\ f_{12} \left( {z_{njk} } \right) & = 2\pi \sin^{ - 1} \frac{a}{{l_{2njk} }}, \\ \overline{f}_{12} \left( {\overline{z}_{njk} } \right) & = - 2\pi \sin^{ - 1} \frac{a}{{\overline{l}_{2njk} }}, \\ f_{12}^{\prime } \left( {z_{njk} } \right) & = - 2\pi \sin^{ - 1} \frac{a}{{l_{2njk}^{\prime } }}, \\ f_{13} \left( {z_{njk} } \right) & = - 2\pi \;\frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{{l_{2njk}^{2} - l_{1njk}^{2} }}, \\ \overline{f}_{13} \left( {\overline{z}_{njk} } \right) & = - 2\pi \;\frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} }}, \\ f_{13}^{\prime } \left( {z_{njk}^{\prime } } \right) & = - 2\pi \;\frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{{l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} }}, \\ f_{14} \left( {z_{njk} } \right) & = - 2\pi \;e^{i\varphi } \frac{{l_{1njk} \sqrt {l_{2njk}^{2} - a^{2} } }}{{l_{2njk} \left( {l_{2njk}^{2} - l_{1njk}^{2} } \right)}}, \\ \overline{f}_{14} \left( {\overline{z}_{njk} } \right) & = 2\pi \;e^{i\varphi } \frac{{\overline{l}_{1njk} \sqrt {\overline{l}_{2njk}^{2} - a^{2} } }}{{\overline{l}_{2njk} \left( {\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} } \right)}}, \\ f_{14}^{\prime } \left( {z_{njk}^{\prime } } \right) & = 2\pi \;e^{i\varphi } \frac{{l_{1njk}^{\prime } \sqrt {l_{2njk}^{\prime 2} - a^{2} } }}{{l_{2njk}^{\prime } \left( {l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} } \right)}}, \\ f_{15} \left( {z_{njk} } \right) & = 2\pi \;e^{2i\varphi } \left[ {\frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{{l_{2njk}^{2} - l_{1njk}^{2} }} - \frac{2a}{{r^{2} }}\left( {1 - \frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{a}} \right)} \right], \\ \overline{f}_{15} \left( {\overline{z}_{njk} } \right) & = 2\pi \;e^{2i\varphi } \left[ {\frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} }} - \frac{2a}{{r^{2} }}\left( {1 - \frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{a}} \right)} \right], \\ f_{15}^{\prime } \left( {z_{njk}^{\prime } } \right) & = 2\pi \;e^{2i\varphi } \left[ {\frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{{l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} }} - \frac{2a}{{r^{2} }}\left( {1 - \frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{a}} \right)} \right]. \\ \end{aligned}$$
(44a)

The expressions \(f_{2i}\), \(\overline{f}_{2i}\), \(f^{\prime}_{2i}\)\(\left( {i = 1,2,3,4,5} \right)\):

$$\begin{aligned} f_{21} \left( {z_{njk} } \right) = & \pi e^{i\varphi } \left[ {r\ln \left( {l_{2njk} + \sqrt {l_{2njk}^{2} - r^{2} } } \right) - r\ln \left( {z_{njk} + \sqrt {z_{njk}^{2} + r^{2} } } \right)} \right] \\ & \quad + \frac{{\left( {a^{2} - z_{njk} \sqrt {r^{2} + z_{njk}^{2} } } \right)}}{r} + \frac{{\left( {rl_{2njk} - 2al_{1njk} } \right)\sqrt {l_{2njk}^{2} - r^{2} } }}{{r^{2} }}, \\ \overline{f}_{21} \left( {\overline{z}_{njk} } \right) = & \pi e^{i\varphi } \left[ {r\ln \left( {\overline{l}_{2njk} + \sqrt {\overline{l}_{2njk}^{2} - r^{2} } } \right) - r\ln \left( { - \overline{z}_{njk} + \sqrt {\overline{z}_{njk}^{2} + r^{2} } } \right)} \right] \\ & \quad + \frac{{\left( {a^{2} + \overline{z}_{njk} \sqrt {r^{2} + \overline{z}_{njk}^{2} } } \right)}}{r} + \frac{{\left( {r\overline{l}_{2njk} - 2a\overline{l}_{1njk} } \right)\sqrt {\overline{l}_{2njk}^{2} - r^{2} } }}{{r^{2} }}, \\ f^{\prime}_{21} \left( {z^{\prime}_{njk} } \right) = & \pi e^{i\varphi } \left[ {r\ln \left( {l^{\prime}_{2njk} + \sqrt {l_{2njk}^{\prime 2} - r^{2} } } \right) - r\ln \left( { - z^{\prime}_{njk} + \sqrt {z_{njk}^{\prime 2} + r^{2} } } \right)} \right] \\ & \quad + \frac{{\left( {a^{2} + z^{\prime}_{njk} \sqrt {r^{2} + z_{njk}^{\prime 2} } } \right)}}{r} + \frac{{\left( {rl^{\prime}_{2njk} - 2al^{\prime}_{1njk} } \right)\sqrt {l_{2njk}^{\prime 2} - r^{2} } }}{{r^{2} }}, \\ f_{22} \left( {z_{njk} } \right) = & 2\pi \left[ {a\sin^{ - 1} \frac{{l_{1njk} }}{r} + \sqrt {l_{2njk}^{2} - a^{2} } - z_{njk} \ln \left( {l_{2njk} + \sqrt {l_{2njk}^{2} - r^{2} } } \right)} \right. \\ & \quad \left. { - \sqrt {r^{2} + z_{njk}^{2} } + z_{njk} \ln \left( {z_{njk} + \sqrt {z_{njk}^{2} + r^{2} } } \right)} \right], \\ \overline{f}_{22} \left( {\overline{z}_{njk} } \right) = & - 2\pi \left[ {a\sin^{ - 1} \frac{{\overline{l}_{1njk} }}{r} + \sqrt {\overline{l}_{2njk}^{2} - a^{2} } + \overline{z}_{njk} \ln \left( {\overline{l}_{2njk} + \sqrt {\overline{l}_{2njk}^{2} - r^{2} } } \right)} \right. \\ & \quad \left. { - \sqrt {r^{2} + \overline{z}_{njk}^{2} } - \overline{z}_{njk} \ln \left( { - \overline{z}_{njk} + \sqrt {\overline{z}_{njk}^{2} + r^{2} } } \right)} \right] \\ f^{\prime}_{22} \left( {z^{\prime}_{njk} } \right) = & - 2\pi \left[ {a\sin^{ - 1} \frac{{l^{\prime}_{1njk} }}{r} + \sqrt {l_{2njk}^{\prime 2} - a^{2} } + z^{\prime}_{njk} \ln \left( {l_{2njk}^{\prime } + \sqrt {l_{2njk}^{\prime 2} - r^{2} } } \right)} \right. \\ & \quad \left. { - \sqrt {r^{2} + z_{njk}^{\prime 2} } - z^{\prime}_{njk} \ln \left( { - z^{\prime}_{njk} + \sqrt {z_{njk}^{\prime 2} + r^{2} } } \right)} \right] \\ f_{23} \left( {z_{njk} } \right) = & - 2\pi \left[ {\ln \left( {l_{2njk} + \sqrt {l_{2njk}^{2} - r^{2} } } \right) - \ln \left( {z_{njk} + \sqrt {z_{njk}^{2} + r^{2} } } \right)} \right], \\ \overline{f}_{23} \left( {\overline{z}_{njk} } \right) = & - 2\pi \left[ {\ln \left( {\overline{l}_{2njk} + \sqrt {\overline{l}_{2njk}^{2} - r^{2} } } \right) - \ln \left( { - \overline{z}_{njk} + \sqrt {\overline{z}_{njk}^{2} + r^{2} } } \right)} \right], \\ f^{\prime}_{23} \left( {z^{\prime}_{njk} } \right) = & - 2\pi \left[ {\ln \left( {l_{2njk}^{\prime } + \sqrt {l_{2njk}^{\prime 2} - r^{2} } } \right) - \ln \left( { - z^{\prime}_{njk} + \sqrt {z_{njk}^{\prime 2} + r^{2} } } \right)} \right], \\ f_{24} \left( {z_{njk} } \right) = & 2\pi e^{i\varphi } \frac{1}{r}\left[ {\sqrt {l_{2njk}^{2} - a^{2} } - \sqrt {r^{2} + z_{njk}^{2} } } \right], \\ \overline{f}_{24} \left( {\overline{z}_{njk} } \right) = & - 2\pi e^{i\varphi } \frac{1}{r}\left[ {\sqrt {\overline{l}_{2njk}^{2} - a^{2} } - \sqrt {r^{2} + \overline{z}_{njk}^{2} } } \right], \\ f^{\prime}_{24} \left( {z_{njk} } \right) = & - 2\pi e^{i\varphi } \frac{1}{r}\left[ {\sqrt {l_{2njk}^{\prime 2} - a^{2} } - \sqrt {r^{2} + z_{njk}^{\prime 2} } } \right], \\ f_{25} \left( {z_{njk} } \right) = & 2\pi e^{2i\varphi } \left[ {\frac{{\left( {2a^{2} - l_{2njk}^{2} } \right)\sqrt {a^{2} - l_{1njk}^{2} } }}{{ar^{2} }} + \frac{{z_{njk} \sqrt {r^{2} + z_{njk}^{2} } - a^{2} }}{{r^{2} }}} \right], \\ \overline{f}_{25} \left( {\overline{z}_{njk} } \right) = & 2\pi e^{2i\varphi } \left[ {\frac{{\left( {2a^{2} - \overline{l}_{2njk}^{2} } \right)\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{ar^{2} }} - \frac{{\overline{z}_{njk} \sqrt {r^{2} + \overline{z}_{njk}^{2} } - a^{2} }}{{r^{2} }}} \right], \\ f^{\prime}_{25} \left( {z^{\prime}_{njk} } \right) = & 2\pi e^{2i\varphi } \left[ {\frac{{\left( {2a^{2} - l_{2njk}^{\prime 2} } \right)\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{{ar^{2} }} - \frac{{z^{\prime}_{njk} \sqrt {r^{2} + z_{njk}^{\prime 2} } - a^{2} }}{{r^{2} }}} \right]. \\ \end{aligned}$$
(44b)

The expressions \(f_{3i}\), \(\overline{f}_{3i}\), \(f^{\prime}_{3i}\)\(\left( {i = 1,2,3,4,5} \right)\):

$$\begin{aligned} f_{31} \left( {z_{njk} } \right) & = \pi re^{i\varphi } {\kern 1pt} \left[ { - z_{njk} \sin^{ - 1} \left( {\frac{{l_{1njk} }}{r}} \right) + \sqrt {a^{2} - l_{1njk}^{2} } \left( {1 - \frac{{l_{1njk}^{2} + 2a^{2} }}{{3r^{2} }}} \right) + \frac{{2a^{3} }}{{3r^{2} }}} \right], \\ \overline{f}_{31} \left( {\overline{z}_{njk} } \right) & = \pi re^{i\varphi } \left[ {\overline{z}_{njk} \sin^{ - 1} \left( {\frac{{\overline{l}_{1njk} }}{r}} \right) + \sqrt {a^{2} - \overline{l}_{1njk}^{2} } \left( {1 - \frac{{\overline{l}_{1njk}^{2} + 2a^{2} }}{{3r^{2} }}} \right) + \frac{{2a^{3} }}{{3r^{2} }}} \right], \\ f^{\prime}_{31} \left( {z^{\prime}_{njk} } \right) & = \pi re^{i\varphi } \left[ {z^{\prime}_{njk} \sin^{ - 1} \left( {\frac{{l^{\prime}_{1njk} }}{r}} \right) + \sqrt {a^{2} - l_{1njk}^{\prime 2} } \left( {1 - \frac{{l_{1njk}^{\prime 2} + 2a^{2} }}{{3r^{2} }}} \right) + \frac{{2a^{3} }}{{3r^{2} }}} \right], \\ f_{32} \left( {z_{njk} } \right) & = \frac{\pi }{2}\left[ {\left( {2a^{2} + 2z_{njk}^{2} - r^{2} } \right)\sin^{ - 1} \left( {\frac{{l_{1njk} }}{r}} \right) + \frac{{3l_{1njk}^{2} - 2a^{2} }}{a}\sqrt {l_{2njk}^{2} - a^{2} } } \right], \\ \overline{f}_{32} \left( {\overline{z}_{njk} } \right) & = - \frac{\pi }{2}\left[ {\left( {2a^{2} + 2\overline{z}_{njk}^{2} - r^{2} } \right)\sin^{ - 1} \left( {\frac{{\overline{l}_{1njk} }}{r}} \right) + \frac{{3\overline{l}_{1njk}^{2} - 2a^{2} }}{a}\sqrt {\overline{l}_{2njk}^{2} - a^{2} } } \right], \\ f^{\prime}_{32} \left( {z^{\prime}_{njk} } \right) & = - \frac{\pi }{2}\left[ {\left( {2a^{2} + 2z_{njk}^{\prime 2} - r^{2} } \right)\sin^{ - 1} \left( {\frac{{l^{\prime}_{1njk} }}{r}} \right) + \frac{{3l_{1njk}^{\prime 2} - 2a^{2} }}{a}\sqrt {l_{2njk}^{\prime 2} - a^{2} } } \right], \\ f_{33} \left( {z_{njk} } \right) & = 2\pi \left[ {z_{njk} \sin^{ - 1} \left( {\frac{{l_{1njk} }}{r}} \right) - \sqrt {a^{2} - l_{1njk}^{2} } } \right], \\ \overline{f}_{33} \left( {\overline{z}_{njk} } \right) & = 2\pi \left[ { - \overline{z}_{njk} \sin^{ - 1} \left( {\frac{{\overline{l}_{1njk} }}{r}} \right) - \sqrt {a^{2} - \overline{l}_{1njk}^{2} } } \right], \\ f^{\prime}_{33} \left( {z^{\prime}_{njk} } \right) & = 2\pi \left[ { - z^{\prime}_{njk} \sin^{ - 1} \left( {\frac{{l^{\prime}_{1njk} }}{r}} \right) - \sqrt {a^{2} - l_{1njk}^{\prime 2} } } \right], \\ f_{34} \left( {z_{njk} } \right) & = \pi re^{i\varphi } \left[ { - \sin^{ - 1} \left( {\frac{{l_{1njk} }}{r}} \right) + \frac{{a\sqrt {l_{2njk}^{2} - a^{2} } }}{{l_{2njk}^{2} }}} \right], \\ \overline{f}_{34} \left( {\overline{z}_{njk} } \right) & = - \pi re^{i\varphi } \left[ { - \sin^{ - 1} \left( {\frac{{\overline{l}_{1njk} }}{r}} \right) + \frac{{a\sqrt {\overline{l}_{2njk}^{2} - a^{2} } }}{{\overline{l}_{2njk}^{2} }}} \right], \\ f^{\prime}_{34} \left( {z^{\prime}_{njk} } \right) & = - \pi re^{i\varphi } \left[ { - \sin^{ - 1} \left( {\frac{{l^{\prime}_{1njk} }}{r}} \right) + \frac{{a\sqrt {l_{2njk}^{\prime 2} - a^{2} } }}{{l_{2njk}^{\prime 2} }}} \right], \\ f_{35} \left( {z_{njk} } \right) & = - 2\pi e^{2i\varphi } \frac{{2a^{3} - \left( {l_{1njk}^{2} + 2a^{2} } \right)\sqrt {a^{2} - l_{1njk}^{2} } }}{{r^{2} }}, \\ \overline{f}_{35} \left( {\overline{z}_{njk} } \right) & = - 2\pi e^{2i\varphi } \frac{{2a^{3} - \left( {\overline{l}_{1njk}^{2} + 2a^{2} } \right)\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{r^{2} }}, \\ f^{\prime}_{35} \left( {z^{\prime}_{njk} } \right) & = - 2\pi e^{2i\varphi } \frac{{2a^{3} - \left( {l_{1njk}^{\prime 2} + 2a^{2} } \right)\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{{r^{2} }}{\kern 1pt} \\ \end{aligned}$$
(44c)

1.3 General solution

In the cylinder coordinates \((r,\varphi ,z)\), when the plane \(rO\varphi\) is parallel to the isotropic plane, the constitutive equations of the three-dimensional transversely isotropic material are

$$\begin{aligned} \sigma_{r} & = c_{11} \frac{{\partial u_{r} }}{\partial r} + c_{12} \left( {\frac{{u_{r} }}{r} + \frac{1}{r}\frac{{\partial u_{\varphi } }}{\partial \varphi }} \right) + c_{13} \frac{{\partial u_{z} }}{\partial z}{\kern 1pt} ,\;\tau_{r\varphi } = c_{66} \left( {\frac{1}{r}\frac{{\partial u_{r} }}{\partial \varphi } + \frac{{\partial u_{\varphi } }}{\partial r} - \frac{{u_{\varphi } }}{r}} \right){\kern 1pt} \\ \sigma_{\varphi } & = c_{12} \frac{{\partial u_{r} }}{\partial r} + c_{11} \left( {\frac{{u_{r} }}{r} + \frac{1}{r}\frac{{\partial u_{\varphi } }}{\partial \varphi }} \right) + c_{13} \frac{{\partial u_{z} }}{\partial z}{\kern 1pt} ,\;\tau_{\varphi z} = c_{44} \left( {\frac{{\partial u_{\varphi } }}{\partial z} + \frac{1}{r}\frac{{\partial u_{z} }}{\partial \varphi }} \right){\kern 1pt} \\ \sigma_{z} & = c_{13} \left( {\frac{{\partial u_{r} }}{\partial r} + \frac{{u_{r} }}{r} + \frac{1}{r}\frac{{\partial u_{\varphi } }}{\partial \phi }} \right) + c_{33} \frac{{\partial u_{z} }}{\partial z}{\kern 1pt} ,\;\tau_{zr} = c_{44} \left( {\frac{{\partial u_{z} }}{\partial r} + \frac{{\partial u_{r} }}{\partial z}} \right){\kern 1pt} \\ \end{aligned}$$
(45a)

Regardless of body forces, the mechanical equilibrium differential equations are

$$\begin{gathered} \frac{{\partial \sigma_{r} }}{\partial r} + \frac{1}{r}\frac{{\partial \tau_{r\varphi } }}{\partial \varphi } + \frac{{\partial \tau_{rz} }}{\partial z} + \frac{{\sigma_{r} - \sigma_{\varphi } }}{r} = 0,\; \hfill \\ \frac{{\partial \tau_{r\varphi } }}{\partial r} + \frac{1}{r}\frac{{\partial \sigma_{\varphi } }}{\partial \phi } + \frac{{\partial \tau_{\varphi z} }}{\partial z} + \frac{{2\tau_{r\varphi } }}{r} = 0{\kern 1pt} , \hfill \\ \frac{{\partial \tau_{rz} }}{\partial r} + \frac{1}{r}\frac{{\partial \tau_{\varphi z} }}{\partial \varphi } + \frac{{\partial \sigma_{z} }}{\partial z} + \frac{{\tau_{rz} }}{r} = 0{\kern 1pt} \hfill \\ \end{gathered}$$
(45b)

where \(u_{m} {\kern 1pt}\) and \(\sigma_{m} {\kern 1pt}\)\((\tau_{mn} {\kern 1pt} )\)\((m,n{\kern 1pt} = r,\varphi ,z)\) represent the components of the mechanical displacements and stresses, respectively; \(c_{ij} {\kern 1pt}\)\((i,j = 1,2, \cdots ,6){\kern 1pt}\) are the elastic modulus. For transversely isotropic materials, there is \(c_{66} = (c_{11} - c_{12} )/2{\kern 1pt}\).

The following symbols (combinatorial components) for the notational convenience are presented:

$$\begin{aligned} \;U & = u + iv = e^{i\varphi } (u_{r} + iu_{\varphi } ){\kern 1pt} ,\;\sigma_{1} \\ & = \sigma_{x} + \sigma_{y} = \sigma_{r} + \sigma_{\varphi } {\kern 1pt} ,\;\sigma_{2} = \sigma_{x} - \sigma_{y} + 2i\tau_{xy} \\ & = e^{2i\varphi } (\sigma_{r} - \sigma_{\varphi } + 2i\tau_{r\varphi } ){\kern 1pt} ,\;\tau_{z} \\ & = \tau_{xz} + i\tau_{yz} = e^{i\varphi } (\tau_{rz} + i\tau_{\varphi z} ){\kern 1pt} \\ \end{aligned}$$
(45c)

where the following compact general solutions ( [56], 2005)

$$\begin{aligned} U & = \Delta \left( {i\psi_{0} + \sum\limits_{j = 1}^{2} {\psi_{j} } } \right),\;u_{z} = \sum\limits_{j = 1}^{2} {s_{j} k_{j} \frac{{\partial \psi_{j} }}{{\partial z_{j} }}} \\ \sigma_{1} & = 2\sum\limits_{j = 1}^{2} {\left( {m_{j} - c_{66} } \right)\frac{{\partial^{2} \psi_{j} }}{{\partial z_{j}^{2} }}} = - 2\sum\limits_{j = 1}^{2} {\left( {m_{j} - c_{66} } \right)\Lambda \psi_{j} } \,, \\ \sigma_{2} & = 2c_{66} \Delta^{2} \left( {i\psi_{0} + \sum\limits_{j = 1}^{2} {\psi_{j} } } \right){\kern 1pt} ,\;\sigma_{z} = \sum\limits_{j = 1}^{2} {\omega_{j} \frac{{\partial^{2} \psi_{j} }}{{\partial z_{j}^{2} }}} = - \sum\limits_{j = 1}^{2} {\omega_{j} \Lambda \psi_{j} } ,\;{\kern 1pt} \\ \tau_{z} & = \Delta \left( {s_{0} c_{44} i\frac{{\partial \psi_{0} }}{{\partial z_{0} }} + \sum\limits_{j = 1}^{2} {s_{j} \omega_{j} \frac{{\partial \psi_{j} }}{{\partial z_{j} }}} } \right) \\ \end{aligned}$$
(45d)

where

$$\begin{aligned} k_{j} & = \frac{{c_{11} - c_{44} s_{j}^{2} }}{{(c_{13} + c_{44} )s_{j}^{2} }}{\kern 1pt} ,\;\omega_{j} = c_{33} s_{j}^{2} k_{j} - c_{13} {\kern 1pt} ,\;m_{j} = 2c_{66} - \omega_{1j} s_{j}^{2} {\kern 1pt} \\ \Delta & = \partial /\partial x + i\partial /\partial y{\kern 1pt} ,\;\Delta^{2} = \partial^{2} /\partial x^{2} - \partial^{2} /\partial y^{2} + 2i\partial^{2} /\partial x\partial y{\kern 1pt} \\ \end{aligned}$$
(45e)

\(\psi_{j}\) satisfies the following harmonic equation

$$\left( {\Lambda + \frac{{\partial^{2} }}{{\partial z_{j}^{2} }}} \right)\psi_{j} = 0,\;\left( {j = 0,1,2} \right)$$
(45f)

and

$$\begin{aligned} \Lambda & = \partial^{2} /\partial x^{2} + \partial^{2} /\partial y^{2} = \partial^{2} /\partial r^{2} + \partial /(r\partial r) + \partial^{2} /(r^{2} \partial \varphi^{2} ){\kern 1pt} ,\; \\ z_{j} & = s_{j} z{\kern 1pt} ,\;(j = 0,1,2){\kern 1pt} ,\;s_{0} = \sqrt {c_{66} /c_{44} } {\kern 1pt} \\ \end{aligned}$$
(45g)

where the eigenvalues \(s_{j} \left( {j = 1,2} \right){\kern 1pt}\) should be satisfied with \({\text{Re}} \;(s_{j} ) > 0{\kern 1pt}\) and the following equation:

$$as^{4} - bs^{2} + c = 0{\kern 1pt} ,$$
(45h)

and

$$a = c_{33} c_{44} {\kern 1pt} ,\;b = c_{11} c_{33} + c_{44}^{2} - \left( {c_{13} + c_{44} } \right)^{2} {\kern 1pt} ,\;c = c_{11} c_{44} {\kern 1pt} .$$
(45i)

1.4 Definition of the Notations

See Table

Table 4 Notations

4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WH. Indentation analysis of coating structure based on parabolic concave indenter contact. Meccanica 58, 137–158 (2023). https://doi.org/10.1007/s11012-022-01624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01624-3

Keywords

Navigation