Skip to main content
Log in

Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account

  • OriginalPaper
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Motivated by recent progress in viscoelastic indentation analysis, the identification of viscoelastic properties from nanoindentation test data taking the real tip geometry into account is presented in this paper. Based on the elastic solution of the indentation problem, the corresponding viscoelastic solution is obtained by the application of the method of functional equations. This general solution, which accounts for the real geometric properties of the indenter tip, is specialized for the case of a trapezoidal load history, commonly employed in nanoindentation testing. Three deviatoric creep models, the single dash-pot, the Maxwell, and the three-parameter model are considered. The so-obtained expressions allow us to determine viscoelastic model parameters via back calculation from the measured load–penetration history. The presented approach is illustrated by the identification of short-term viscoelastic properties of bitumen. Hereby, the influence of loading rate, maximum load, and temperature on the model parameters is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  MATH  MathSciNet  Google Scholar 

  2. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    ADS  Google Scholar 

  3. Cheng L, Xia X, Scriven LE, Gerberich WW (2005) Spherical-tip indentation of viscoelastic material. Mech Mater 37:213–226

    Article  Google Scholar 

  4. Vandamme M, Ulm F-J (2006) Viscoelastic solutions for conical indentation. Int J Solids Struct 43(10):3142–3165

    Article  Google Scholar 

  5. Lee EH, Radok JRM (1960) The contact problem for viscoelastic bodies. J Appl Mech 82:438–444

    MathSciNet  Google Scholar 

  6. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover, New York

    MATH  Google Scholar 

  7. Lee EH (1955) Stress analysis in visco-elastic bodies. Quarter Appl Math 13:183–190

    Google Scholar 

  8. Findley WN, Lai JS, Onaran K (1989) Creep and relaxation of nonlinear viscoelastic materials. Dover Publications, New York

    Google Scholar 

  9. Partal P (1999) Rheological characterisation of synthetic binders and unmodified bitumens. Fuel 78:1–10

    Article  Google Scholar 

  10. ÖNORM EN 1426 (2000) Bitumen und bitumenhaltige Bindemittel – Bestimmmung der Nadelpenetration [Bitumen and bituminous binders – Determination of needle penetration]. Österreichisches Normungsinstitut, Vienna In German

  11. ÖNORM EN 12593 (2000) Bitumen und bitumenhaltige Bindemittel – Bestimmmung des Brechpunktes nach Fraaß [Bitumen and bituminous binders – Determination of the Fraass breaking point]. Österreichisches Normungsinstitut, Vienna. In German

  12. ÖNORM EN 1427 (2000) Bitumen und bitumenhaltige Bindemittel – Bestimmmung des – Ring- und Kugel-Verfahren [Bitumen and bituminous binders – Determination of softening point - Ring and Ball method]. Österreichisches Normungsinstitut, Vienna. In German

  13. Ulm F-J, Delafargue A, Constantinides G (2005) Experimental microporomechanics. In Ulm F-J, Dormieux L (eds) Applied micromechanics of porous materials (CISM Courses and Lectures No. 480). Vienna, Springer

    Google Scholar 

  14. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in Fortran 77: the art of scientific computing, vol 1 of Fortran numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  15. Jäger A (2004) Microstructural identification of bitumen by means of atomic force microscopy (AFM), modulated differential scanning calorimetry (MDSC), and reflected light microscopy (RLM). Master’s thesis, Vienna University of Technology, Vienna

  16. Stangl K, Jäger A, Lackner R (2006) Microstructure-based identification of bitumen performance. Int J Road Mater Pavement 7:111–142

    Google Scholar 

  17. Lackner R, Spiegl M, Blab R, Eberhardsteiner J (2005) Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? Arguments from multiscale analysis. J Mater Civil Eng (ASCE) 17(5):485–491

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Jäger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, A., Lackner, R. & Eberhardsteiner, J. Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42, 293–306 (2007). https://doi.org/10.1007/s11012-006-9041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-006-9041-7

Keywords

Navigation