Skip to main content
Log in

Fluid-filled toroidal membrane in contact with flat elastic substrate

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present study aims to explore the contact mechanics of a fluid-filled toroidal hyperelastic membrane pressed against an elastic substrate. The deformable substrate is modeled as two flat elastic plates which are laterally pressed against the inflated torus. A stack of two bonded annular membranes is considered in the undeformed state, which results in toroidal topology upon internal pressurization. The air-inflated and liquid-filled membrane structure interaction with the elastic plate is studied under two different contact conditions: frictionless and no-slip contact. A variational formulation is adopted to obtain the equations of equilibrium of the membrane, and a numerical solution scheme coupled with an optimization technique is used with incremental step size. The pressing process is assumed to be quasi-static and axisymmetric. Frictionless contact allows the membrane material points to flow freely over the plate, thereby increasing the enclosed volume of the membrane during pressing. However, no-slip contact restricts the material point movement within the contact zone, and thus the volume of the membrane drops during contact. The contact stress generated in the elastic substrate and its indentation increase due to strain-hardening of the membrane. The plate indentation decreases due to increased stiffness, reducing the contact patch area. The force-displacement characteristics show a rapid increase in stiffness with increased plate displacement. Replacing the inflating air with liquid, the force required to maintain the contact is also found to increase for identical indentation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Jenkins CH (2001) Gossamer spacecraft: membrane and inflatable structures technology for space applications. American Institute of Aeronautics and Astronautics, Virginia

    Book  Google Scholar 

  2. Charrier J (1973) Air-rubber springs: an analysis. Int J Mech Sci 15(6):435–448. https://doi.org/10.1016/0020-7403(73)90027-1

    Article  Google Scholar 

  3. Oguoma O, Baumgarten J (1990) Contact area of toroidal air springs. Int J Mech Sci 32(8):677–686. https://doi.org/10.1016/0020-7403(90)90009-8

    Article  Google Scholar 

  4. Mendia-Garcia I, Gil-Negrete Laborda N, Pradera-Mallabiabarrena A, Berg M (2020) A survey on the modelling of air springs secondary suspension in railway vehicles. Veh Syst Dyn. https://doi.org/10.1080/00423114.2020.1838566

    Article  Google Scholar 

  5. Graczykowski C (2016) Mathematical models and numerical methods for the simulation of adaptive inflatable structures for impact absorption. Comput Struct 174:3–20. https://doi.org/10.1016/j.compstruc.2015.06.017

    Article  Google Scholar 

  6. Eftaxiopoulos DA, Atkinson C (2005) A nonlinear, anisotropic and axisymmetric model for balloon angioplasty. Proc R Soc A Math Phys Eng Sci 461(2056):1097–1128. https://doi.org/10.1098/rspa.2004.1419

    Article  MathSciNet  MATH  Google Scholar 

  7. Tang P, Huang D, Wang Y, Gong R, Tang W, Ding Y (2016) Position based balloon angioplasty. In: Proceedings of the 15th ACM SIGGRAPH conference on virtual-reality continuum and its applications in industry, Vol. 1, pp. 391–400. https://doi.org/10.1145/3013971.3013996

  8. Srivastava A, Tepole AB, Hui C-Y (2016) Skin stretching by a balloon tissue expander: interplay between contact mechanics and skin growth. Extreme Mech Lett 9:175–187. https://doi.org/10.1016/j.eml.2016.06.008

    Article  Google Scholar 

  9. Rivera R, LoGiudice J, Gosain AK (2005) Tissue expansion in pediatric patients. Clin Plast Surg 32(1):35–44

    Article  Google Scholar 

  10. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592. https://doi.org/10.1063/1.1712836

    Article  MATH  Google Scholar 

  11. Rivlin R (1948) Large elastic deformations of isotropic materials. i. fundamental concepts. Philos Trans R Soc Lond Ser A Math Phys Sci 240(822):459–490. https://doi.org/10.1007/978-1-4612-2416-7_5

    Article  MathSciNet  MATH  Google Scholar 

  12. Rivlin RS, Saunders D (1951) Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philos Trans R Soc Lond Ser A Math Phys Sci 243(865):251–288. https://doi.org/10.1007/978-1-4612-2416-7_12

    Article  MATH  Google Scholar 

  13. Adkins JE, Rivlin RS (1952) Large elastic deformations of isotropic materials ix. the deformation of thin shells. Philos Trans R Soc Lond Ser A Math Phys Sci 244(888):505–531. https://doi.org/10.1098/rsta.1952.0013

    Article  MathSciNet  MATH  Google Scholar 

  14. Klingbell WW, Shield RT (1964) Some numerical investigations on empirical strain energy functions in the large axi-symmetric extensions of rubber membranes. Zeitschrift für angewandte Mathematik und Physik ZAMP 15(6):608–629. https://doi.org/10.1007/BF01595147

    Article  Google Scholar 

  15. Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523. https://doi.org/10.5254/1.3547602

    Article  Google Scholar 

  16. Tobajas R, Ibartz E, Gracia L (2016) A comparative study of hyperelastic constitutive models to characterize the behavior of a polymer used in automotive engines. In: Proceedings of the 2nd international electronic conference on materials, vol. 2, pp. 002. https://doi.org/10.3390/ecm-2-A002

  17. Ogden RW (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 326(1567):565–584. https://doi.org/10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

  18. Yeoh O (1997) Hyperelastic material models for finite element analysis of rubber. J Nat Rubber Res 12:142–153

    Google Scholar 

  19. Rao M, Satayanarayana M (2019) On the behavior of hyperelastic materials, a mooney-rivlin approach. Int J Eng Res Technol 7:1–5

    Google Scholar 

  20. Bergstrom JS (2015) Mechanics of solid polymers: theory and computational modeling. William Andrew, Waltham

    Google Scholar 

  21. Hart-Smith L, Crisp J (1967) Large elastic deformations of thin rubber membranes. Int J Eng Sci 5(1):1–24. https://doi.org/10.1016/0020-7225(67)90051-1

    Article  MATH  Google Scholar 

  22. Yang WH, Feng WW (1970) On axisymmetrical deformations of nonlinear membranes. J Appl Mech 37(4):1002–1011. https://doi.org/10.1115/1.3408651

    Article  MATH  Google Scholar 

  23. Feng WW, Huang P (1974) On the inflation of a plane nonlinear membrane. J Appl Mech 41(3):767–771. https://doi.org/10.1115/1.3423385

    Article  Google Scholar 

  24. Patil A, DasGupta A (2013) Finite inflation of an initially stretched hyperelastic circular membrane. Eur J Mech-A/Solids 41:28–36. https://doi.org/10.1016/j.euromechsol.2013.02.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. https://doi.org/10.1093/COMJNL/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  26. Pamplona D, Goncalves P, Lopes S (2006) Finite deformations of cylindrical membrane under internal pressure. Int J Mech Sci 48(6):683–696. https://doi.org/10.1016/j.ijmecsci.2005.12.007

    Article  Google Scholar 

  27. Needleman A (1977) Inflation of spherical rubber balloons. Int J Solids Struct 13(5):409–421. https://doi.org/10.1016/0020-7683(77)90036-1

    Article  Google Scholar 

  28. Kydoniefs A, Spencer A (1965) The finite inflation of an elastic torus. Int J Eng Sci 3(2):173–195. https://doi.org/10.1016/0020-7225(65)90043-1

    Article  MathSciNet  Google Scholar 

  29. Kydoniefs A (1967) The finite inflation of an elastic toroidal membrane. Int J Eng Sci 5(6):477–494. https://doi.org/10.1016/0020-7225(67)90036-5

    Article  Google Scholar 

  30. Hill JM (1980) The finite inflation of a thick-walled elastic torus. Q J Mech Appl Math 33(4):471–490. https://doi.org/10.1093/qjmam/33.4.471

    Article  MathSciNet  MATH  Google Scholar 

  31. Li X, Steigmann D (1995) Finite deformation of a pressurized toroidal membrane. Int J Non-linear Mech 30(4):583–595. https://doi.org/10.1016/0020-7462(95)00004-8

    Article  MATH  Google Scholar 

  32. Tamadapu G, DasGupta A (2013) Finite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-section. Int J Non-Linear Mech 49:31–39. https://doi.org/10.1016/j.ijnonlinmec.2012.09.008

    Article  Google Scholar 

  33. Roychowdhury S, DasGupta A (2015) Inflating a flat toroidal membrane. Int J Solids Struct 67:182–191. https://doi.org/10.1016/j.ijsolstr.2015.04.019

    Article  Google Scholar 

  34. Feng WW, Yang W-H (1973) On the contact problem of an inflated spherical nonlinear membrane. J Appl Mech 40(1):209–214. https://doi.org/10.1115/1.3422928

    Article  Google Scholar 

  35. Feng W, Tielking J, Huang P (1974) The inflation and contact constraint of a rectangular mooney membrane. J Appl Mech 41(4):979–984. https://doi.org/10.1115/1.3423494

    Article  Google Scholar 

  36. Feng WW, Huang P (1975) On the general contact problem of an inflated nonlinear plane membrane. Int J Solids Struct 11(4):437–448. https://doi.org/10.1016/0020-7683(75)90079-7

    Article  MATH  Google Scholar 

  37. Kolesnikov AM, Shatvorov NM (2022) Indentation of a circular hyperelastic membrane by a rigid cylinder. Int J Non-Linear Mech 138:103836. https://doi.org/10.1016/j.ijnonlinmec.2021.103836

    Article  Google Scholar 

  38. Pearce SP, King JR, Holdsworth MJ (2011) Axisymmetric indentation of curved elastic membranes by a convex rigid indenter. Int J Non-linear Mech 46(9):1128–1138. https://doi.org/10.1016/j.ijnonlinmec.2011.04.030

    Article  Google Scholar 

  39. Selvadurai A (2006) Deflections of a rubber membrane. J Mech Phys Solids 54(6):1093–1119. https://doi.org/10.1016/j.jmps.2006.01.001

    Article  MATH  Google Scholar 

  40. Tielking JT, Feng WW (1974) The application of the minimum potential energy principle to nonlinear axisymmetric membrane problems. J Appl Mech 41(2):491–496. https://doi.org/10.1115/1.3423315

    Article  MATH  Google Scholar 

  41. Kumar N, DasGupta A (2013) On the contact problem of an inflated spherical hyperelastic membrane. Int J Non-Linear Mech 57:130–139. https://doi.org/10.1016/j.ijnonlinmec.2013.06.015

    Article  Google Scholar 

  42. Srivastava A, Hui C-Y (2013) Large deformation contact mechanics of long rectangular membranes. i. adhesionless contact. Proc R Soc A Math Phys Eng Sci 469(2160):20130424. https://doi.org/10.1098/rspa.2013.0424

    Article  Google Scholar 

  43. Srivastava A, Hui C-Y (2013) Large deformation contact mechanics of a pressurized long rectangular membrane. ii. adhesive contact. Proc R Soc A Math Phys Eng Sci 469(2160):20130425. https://doi.org/10.1098/rspa.2013.0424

    Article  Google Scholar 

  44. Long R, Shull KR, Hui C-Y (2010) Large deformation adhesive contact mechanics of circular membranes with a flat rigid substrate. J Mech Phys Solids 58(9):1225–1242. https://doi.org/10.1016/j.jmps.2010.06.007

    Article  MathSciNet  MATH  Google Scholar 

  45. Patil A, DasGupta A, Eriksson A (2015) Contact mechanics of a circular membrane inflated against a deformable substrate. Int J Solids Struct 67:250–262. https://doi.org/10.1016/j.ijsolstr.2015.04.025

    Article  Google Scholar 

  46. Yang X, Yu L, Long R (2021) Contact mechanics of inflated circular membrane under large deformation: analytical solutions. Int J Solids Struct 233:111222

    Article  Google Scholar 

  47. Patil A, DasGupta A (2015) Constrained inflation of a stretched hyperelastic membrane inside an elastic cone. Meccanica 50(6):1495–1508. https://doi.org/10.1007/s11012-015-0102-7

    Article  MathSciNet  MATH  Google Scholar 

  48. Tamadapu G, DasGupta A (2014) Finite inflation of a hyperelastic toroidal membrane over a cylindrical rim. Int J Solids Struct 51(2):430–439. https://doi.org/10.1016/j.ijsolstr.2013.10.016

    Article  MATH  Google Scholar 

  49. Taber LA (2004) Nonlinear theory of elasticity: applications in biomechanics. World Scientific, Toh Tuck Link, Singapore

    Book  Google Scholar 

  50. Yu LK, Valanis K (1970) The inflation of axially symmetric membranes by linearly varying hydrostatic pressure. Trans Soc Rheol 14(2):159–183. https://doi.org/10.1122/1.549185

    Article  MATH  Google Scholar 

  51. Nadler B (2010) On the contact of a spherical membrane enclosing a fluid with rigid parallel planes. Int J Non-Linear Mech 45(3):294–300. https://doi.org/10.1016/j.ijnonlinmec.2009.12.001

    Article  Google Scholar 

  52. Zhou Y, Nordmark A, Eriksson A (2016) Multi-parametric stability investigation for thin spherical membranes filled with gas and fluid. Int J Non-Linear Mech 82:37–48. https://doi.org/10.1016/j.ijnonlinmec.2016.02.005

    Article  Google Scholar 

  53. Sohail T, Nadler B (2011) On the contact of an inflated spherical membrane-fluid structure with a rigid conical indenter. Acta Mech 218(3):225–235. https://doi.org/10.1007/s00707-010-0418-2

    Article  MATH  Google Scholar 

  54. Patil A, Nordmark A, Eriksson A (2014) Free and constrained inflation of a pre-stretched cylindrical membrane. Proc R Soc A Math Phys Eng Sci 470(2169):20140282. https://doi.org/10.1098/rspa.2014.0282

    Article  Google Scholar 

  55. Ogden RW (1997) Non-linear elastic deformations. Courier Corporation, Mineola

    Google Scholar 

Download references

Acknowledgements

The computational facility of the present work has been supported by the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

The complete expressions for \(F_1\) and \(F_2\) of Eqs. (17) and (19) are given below.

$$\begin{aligned}&F_1(u_1,u_2,u_3,u_4,x,p)=A/B \\&F_2(u_1,u_2,u_3,u_4,x,p)=C/B \\&A=-u_{1}^3 x^2 \left( u_{2}^2+u_{4}^2\right) \left( \alpha u_{1}^2+x^2\right) \left( u_{1}^2 \left( u_{2}^2+u_{4}^2\right) ^3-x^2 \left( u_{2}^2-3 u_{4}^2\right) \right) A_1\\&\quad +4 u_{2} u_{4} \left( \alpha u_{1}^2 x^4+x^6\right) \left( u_{1} u_{2} (2 k (u_{3}-l) (H ({R_{0}} (u_{3}-l)))+p) + 4 u_{4} A_2 \right) \end{aligned}$$

Where,

$$\begin{aligned} A_1=&-\frac{u_{1} \left( u_{4} x (2 k (u_{3}-l) (H ({R_{0}} (u_{3}-l)))+p)+4 \alpha u_{2}^2-4 \alpha u_{4}^2-4\right) }{x}+\frac{4 \alpha u_{1}^2 u_{2}}{x^2}\\&+\frac{4 x^3 \left( -\alpha -\frac{1}{u_{2}^2+u_{4}^2}-\frac{2 u_{2}^2}{\left( u_{2}^2+u_{4}^2\right) ^2}\right) }{u_{1}^3}+\frac{12 u_{2} x^2}{u_{1}^2 \left( u_{2}^2+u_{4}^2\right) ^2}+4 u_{2} \left( \frac{\alpha }{\left( u_{2}^2+u_{4}^2\right) ^2}-1\right) , \end{aligned}$$

and

$$\begin{aligned} A_2\;\;\;=\;\;\;&\left( \frac{3 x^2}{u_{1}^2 \left( u_{2}^2+u_{4}^2\right) ^2}-\frac{2 u_{2} x^3}{u_{1}^3 \left( u_{2}^2+u_{4}^2\right) ^2}+\frac{\alpha u_{1}^2}{x^2}-\frac{2 \alpha u_{1} u_{2}}{x}+\frac{\alpha }{\left( u_{2}^2+u_{4}^2\right) ^2}-1\right) . \\ B\;\;\;=\;\;\;&4 u_{1} x \left( \alpha u_{1}^2+x^2\right) \left( -2 u_{1}^2 x^2 \left( u_{2}^2+u_{4}^2\right) ^2-u_{1}^4 \left( u_{2}^2+u_{4}^2\right) ^4+3 x^4\right) \\ C\;\;\;=\;\;\;&u_{1}^4 u_{2} x^3 \left( u_{2}^2+u_{4}^2\right) C_1-8 u_{2} u_{4} x^7 \left( 2 \alpha u_{2}^2+2 \alpha u_{4}^2+3\right) \\&-u_{1}^6 u_{2} x \left( u_{2}^2+u_{4}^2\right) ^4 (2 k x (u_{3}-l) (H (R_{0} (u_{3}-l)))+p x-8 \alpha u_{4})\\&-4 \alpha u_{1}^7 u_{4} \left( u_{2}^2+u_{4}^2\right) ^4+4 u_{1}^3 u_{4} x^4 \left( \alpha -8 u_{2}^2 u_{4}^2-4 u_{2}^4-4 u_{4}^4\right) \\&+4 u_{1}^5 u_{4} x^2 \left( u_{2}^2+u_{4}^2\right) ^4+8 u_{1}^2 u_{2} u_{4} x^5 \left( u_{2}^2+u_{4}^2\right) ^2+12 u_{1} u_{4} x^6, \end{aligned}$$

where

$$\begin{aligned} C_1=&-3 u_{2}^2 x (2 k (u_{3}-l) (H (R_{0} (u_{3}-l)))+p)+8 u_{4} \left( \alpha u_{2}^2+2\right) +8 \alpha u_{4}^3\\&-3 u_{4}^2 x (2 k (u_{3}-l) (H (R_{0} (u_{3}-l)))+p). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Roychowdhury, S. Fluid-filled toroidal membrane in contact with flat elastic substrate. Meccanica 57, 2303–2321 (2022). https://doi.org/10.1007/s11012-022-01575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01575-9

Keywords

Navigation