Skip to main content
Log in

An Anisotropic Hyperelastic Inflated Toroidal Membrane in Lateral Contact with Two Flat Rigid Plates

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The present paper studies the contact problem of an inflated toroidal nonlinear anisotropic hyperelastic membrane laterally pressed between two flat rigid plates. The material is assumed to be homogeneous, and an anisotropic term is included in the incompressible Mooney–Rivlin hyperelastic model. Initially, two annular-shaped flat membranes, bonded at both equators, are considered in an undeformed state, which results in a toroidal geometry upon uniform internal pressurization. The contact problem of the inflated torus laterally pressed between two flat parallel plates is solved. Two different contact conditions, namely frictionless contact and no-slip contact, are considered within the contact region. The enclosed amount of gas within the inflated membrane is considered to be constant during the solution of the contact problem, which is solved in a quasi-static manner. In the case of no-slip contact, the stretch locking has been observed, and the frictionless contact causes the free flow of material points. The membrane’s stiffness increases with increasing anisotropic, material, and geometric parameters depicted in the force versus displacement curve under contact conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jenkins CH. Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications. Virginia: American Institute of Aeronautics and Astronautics; 2001.

    Book  Google Scholar 

  2. Eftaxiopoulos DA, Atkinson C. A nonlinear, anisotropic and axisymmetric model for balloon angioplasty. Proc R Soc A Math Phys Eng Sci. 2005;461(2056):1097–128. https://doi.org/10.1098/rspa.2004.1419.

    Article  MathSciNet  MATH  Google Scholar 

  3. Graczykowski C. Mathematical models and numerical methods for the simulation of adaptive inflatable structures for impact absorption. Comput Struct. 2016;174:3–20. https://doi.org/10.1016/j.compstruc.2015.06.017.

    Article  Google Scholar 

  4. Sakagami R, Takahashi R, Wachi A, Koshiro Y, Maezawa H, Kasai Y, Nakasuka S. Integral design method for simple and small mars lander system using membrane aeroshell. Acta Astronaut. 2018;144:103–18. https://doi.org/10.1016/j.actaastro.2017.11.024.

    Article  Google Scholar 

  5. Luo R, Liu C, Shi H. Dynamic simulation of a high-speed train with interconnected hydro-pneumatic secondary suspension. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2021. https://doi.org/10.1177/09544097211031334.

    Article  Google Scholar 

  6. Mooney M. A theory of large elastic deformation. J Appl Phys. 1940;11(9):582–92. https://doi.org/10.1063/1.1712836.

    Article  MATH  Google Scholar 

  7. Rivlin RS. Large elastic deformations of isotropic materials. i. fundamental concepts. Philos Trans R Soc Lond Ser A Math Phys Sci. 1948;240(822):459–90. https://doi.org/10.1098/rsta.1948.00026.

    Article  MathSciNet  MATH  Google Scholar 

  8. Rivlin RS, Saunders DW. Large elastic deformations of isotropic materials vii Experiments on the deformation of rubber. Philos Trans R Soc Lond Ser A Math Phys Sci. 1951;243(865):251–88. https://doi.org/10.1098/rsta.1951.0004.

    Article  MATH  Google Scholar 

  9. Hart-Smith LJ, Crisp JDC. Large elastic deformations of thin rubber membranes. Int J Eng Sci. 1967;5(1):1–24. https://doi.org/10.1016/0020-7225(67)90051-1.

    Article  MATH  Google Scholar 

  10. Taber LA. Nonlinear theory of elasticity: applications in biomechanics. Toh Tuck Link: World Scientific Press; 2004.

    Book  MATH  Google Scholar 

  11. Yeoh OH. Hyperelastic material models for finite element analysis of rubber. J Natl Rubber Res. 1997;12(3):142–53.

    Google Scholar 

  12. Ogden RW. Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci. 1972;326(1567):565–84. https://doi.org/10.1098/rspa.1972.0026.

    Article  MATH  Google Scholar 

  13. Green AE, Zerna W. Theoretical elasticity. UNew York: Dover Publications; 1992.

    MATH  Google Scholar 

  14. Yang WH, Feng WW. On axisymmetrical deformations of nonlinear membranes. J Appl Mech. 1970;37(4):1002–11. https://doi.org/10.1115/1.3408651.

    Article  MATH  Google Scholar 

  15. Feng WW, Huang P. On the inflation of a plane non-linear membrane. J Appl Mech. 1974;41(3):767–71. https://doi.org/10.1115/1.3423385.

    Article  Google Scholar 

  16. Selvadurai APS. Deflections of a rubber membrane. J Mech Phys Solids. 2006;54(6):1093–119. https://doi.org/10.1016/j.jmps.2006.01.001.

    Article  MATH  Google Scholar 

  17. Ogden RW. Non-linear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: Ogden RW, Holzapfel GA, editors. Biomechanics of soft tissue in cardiovascular systems. Vienna: Springer; 2003. p. 65–108.

    Chapter  Google Scholar 

  18. Klisch SM. A bimodular polyconvex anisotropic strain energy function for articular cartilage. J Biomech Eng. 2007;129(2):250–8. https://doi.org/10.1115/1.2486225.

    Article  Google Scholar 

  19. Tamadapu G, DasGupta A. Effect of curvature and anisotropy on the finite inflation of a hyperelastic toroidal membrane. Eur J Mech A/Solids. 2014;46:106–14. https://doi.org/10.1016/j.euromechsol.2014.02.006.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tielking JT, Feng WW. The application of the minimum potential energy principle to non-linear axisymmetric membrane problems. J Appl Mech. 1974;41(2):491–6. https://doi.org/10.1115/1.3423315.

    Article  MATH  Google Scholar 

  21. Patil A, DasGupta A. Finite inflation of an initially stretched hyper- elastic circular membrane. Eur J Mech A/Solids. 2013;41:28–36. https://doi.org/10.1016/j.euromechsol.2013.02.007.

    Article  MathSciNet  MATH  Google Scholar 

  22. Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13. https://doi.org/10.1093/comjnl/7.4.308.

    Article  MathSciNet  MATH  Google Scholar 

  23. Tamadapu G, Dhavale NN, DasGupta A. Geometrical feature of the scaling behavior of the limit-point pressure of inflated hyperelastic membranes. Phys Rev E. 2013;88(5): 053201. https://doi.org/10.1103/PhysRevE.88.053201.

    Article  Google Scholar 

  24. Needleman A. Inflation of spherical rubber balloons. Int J Solids Struct. 1977;13(5):409–21. https://doi.org/10.1016/0020-7683(77)90036-1.

    Article  Google Scholar 

  25. Zhou Y, Nordmark A, Eriksson A. Multi-parametric stability investigation for thin spherical membranes filled with gas and fluid. Int J Non-Linear Mech. 2016;82:37–48. https://doi.org/10.1016/j.ijnonlinmec.2016.02.005.

    Article  Google Scholar 

  26. Patil A, Nordmark A, Eriksson A. Instability investigation on fluid-loaded pre-stretched cylindrical membranes. Proc R Soc A Math Phys Eng Sci. 2015;471(2177):20150016. https://doi.org/10.1098/rspa.2015.0016.

    Article  Google Scholar 

  27. Kydoniefs AD, Spencer AJM. The finite inflation of an elastic toroidal membrane of circular cross-section. Int J Eng Sci. 1967;5(4):367–91. https://doi.org/10.1016/0020-7225(67)90044-4.

    Article  MATH  Google Scholar 

  28. Tamadapu G, DasGupta A. Finite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-section. Int J Non-Linear Mech. 2013;49:31–9. https://doi.org/10.1016/j.ijnonlinmec.2012.09.008.

    Article  Google Scholar 

  29. Roychowdhury S, DasGupta A. Inflating a flat toroidal membrane. Int J Solids Struct. 2015;67:182–91. https://doi.org/10.1016/j.ijsolstr.2015.04.019.

    Article  Google Scholar 

  30. Srivastava A, Hui C-Y. Large deformation contact mechanics of long rectangular membranes i adhesionless contact. Proc R Soc A Math Phys Eng Sci. 2013;469(2160):20130424. https://doi.org/10.1098/rspa.2013.0424.

    Article  Google Scholar 

  31. Long R, Shull KR, Hui C-Y. Large deformation adhesive contact mechanics of circular membranes with a flat rigid substrate. J Mech Phys Solids. 2010;58(9):1225–42. https://doi.org/10.1016/j.jmps.2010.06.007.

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu D, Liechti KM. Analytical and experimental study of a circular membrane in hertzian contact with a rigid substrate. Int J Solids Struct. 2010;47(7–8):969–77. https://doi.org/10.1016/j.ijsolstr.2009.12.013.

    Article  MATH  Google Scholar 

  33. Nadler B. On the contact of a spherical membrane enclosing a fluid with rigid parallel planes. Int J Non-Linear Mech. 2010;45(3):294–300. https://doi.org/10.1016/j.ijnonlinmec.2009.12.001.

    Article  Google Scholar 

  34. Jiammeepreecha W, Chaidachatorn K, Chucheepsakul S. Non-lin ear static response of an underwater elastic toroidal storage container. Int J Solids Struct. 2021;228: 111134. https://doi.org/10.1016/j.ijsolstr.2021.111134.

    Article  Google Scholar 

  35. Feng WW, Yang WH. On the contact problem of an inflated spherical non-linear membrane. J Appl Mech. 1973;40(1):209–14. https://doi.org/10.1115/1.3422928.

    Article  Google Scholar 

  36. Patil A, DasGupta A, Eriksson A. Contact mechanics of a circular membrane inflated against a deformable substrate. Int J Solids Struct. 2015;67:250–62. https://doi.org/10.1016/j.ijsolstr.2015.04.025.

    Article  Google Scholar 

  37. Tamadapu G, DasGupta A. Finite inflation of a hyperelastic toroidal membrane over a cylindrical rim. Int J Solids Struct. 2014;51(2):430–9. https://doi.org/10.1016/j.ijsolstr.2013.10.016.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the content of this article.

Appendix A

Appendix A

The full expression of functions \({F}_{1}\) and \({F}_{2}\) applicable for free inflation and contact problem solution are given below

$$ F_{1} \left( {u_{1} ,u_{2} ,u_{4} ,x,p} \right) = A/B $$
(30)
$$ F_{2} \left( {u_{1} ,u_{2} ,u_{4} ,x,p} \right) = C/B $$
(31)
$$\begin{aligned} A & = - \left( {u_{1}^{6} x^{3} \left( {u_{2}^{2} + u_{4}^{2} } \right)\left( {2\zeta \left( {u_{2}^{2} + u_{4}^{2} } \right)^{3} \left( {u_{2}^{2} \left( {3pu_{4} x - 4\left( {\alpha + 2\alpha u_{4}^{2} + 1} \right)} \right) - \left( {3u_{4}^{2} - 1} \right)\left( { - pu_{4} x + 4\alpha u_{4}^{2} + 4} \right)\left. { + 4\alpha u_{2}^{4} } \right)} \right.} \right.} \right. \\ & \quad + 3pu_{2}^{4} u_{4}^{3} x + 3pu_{2}^{2} u_{4}^{5} x + 3\alpha pu_{2}^{2} u_{4} x + pu_{2}^{6} u_{4} x + 3\alpha pu_{4}^{3} x + pu_{4}^{7} x - 4\alpha ^{2} u_{2}^{4} + 4\alpha u_{2}^{8} + 4\alpha u_{2}^{2} - 16\alpha ^{2} u_{2}^{2} u_{4}^{2} + 8\alpha u_{2}^{6} u_{4}^{2} \\ & \quad \left. { - 8\alpha u_{2}^{2} u_{4}^{6} - 12u_{2}^{4} u_{4}^{2} - 12u_{2}^{2} u_{4}^{4} - 4u_{2}^{6} - 12\alpha ^{2} u_{4}^{4} - 4\alpha u_{4}^{8} - 12\alpha u_{4}^{2} - 4u_{4}^{6} } \right) + u_{1}^{4} x^{5} \left( {u_{2}^{2} + u_{4}^{2} } \right)\left( {3pu_{2}^{2} u_{4} x + 3pu_{4}^{3} x} \right. \\ & \quad \left. { + 4\alpha ^{2} \left( {u_{2}^{2} + u_{4}^{2} } \right)^{3} + 8\alpha \left( {u_{2}^{4} - u_{4}^{4} } \right) + 4u_{2}^{2} - 12u_{4}^{2} } \right) + \alpha u_{1}^{8} x\left( {u_{2}^{2} + u_{4}^{2} } \right)^{4} \left( {pu_{4} x + 4\alpha \left( {u_{2} - u_{4} } \right)\left( {u_{2} + u_{4} } \right) - 4} \right) \\ & \quad - 4\alpha ^{2} u_{1}^{9} u_{2} \left( {u_{2}^{2} + u_{4}^{2} } \right)^{4} + 4u_{1}^{5} u_{2} x^{4} \left( {\alpha ^{2} - 4\alpha u_{2}^{4} + 4\zeta \left( {u_{2}^{2} + u_{4}^{2} - 1} \right)\left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} \left( {\left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} - \alpha } \right)} \right. \\ & \quad \left. { - 8\alpha u_{2}^{2} u_{4}^{2} + 4\zeta ^{2} \left( {u_{2}^{2} + u_{4}^{2} - 1} \right)^{2} \left( {u_{2}^{2} + u_{4}^{2} } \right)^{4} + 4u_{2}^{6} u_{4}^{2} + 6u_{2}^{4} u_{4}^{4} + 4u_{2}^{2} u_{4}^{6} + u_{2}^{8} - 4\alpha u_{4}^{4} + u_{4}^{8} } \right) \\ & \quad + 4u_{1}^{2} x^{7} \left( { - \alpha ^{2} u_{2}^{4} + \alpha u_{2}^{8} - 3\alpha u_{2}^{2} } \right. + 2\alpha ^{2} u_{2}^{2} u_{4}^{2} + 2\zeta \left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} \left( {\alpha \left( {u_{2}^{2} + 3u_{4}^{2} - 1} \right)\left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} } \right. \\ & \quad \left. { + 3\left( {u_{2}^{2} + u_{2} + u_{4}^{2} } \right)\left( {\left( {u_{2} - 1} \right)u_{2} + u_{4}^{2} } \right) - u_{4}^{2} } \right) + 4\alpha u_{2}^{6} u_{4}^{2} + 6\alpha u_{2}^{4} u_{4}^{4} + 4\alpha u_{2}^{2} u_{4}^{6} + 7u_{2}^{4} u_{4}^{2} \\ & \quad \left. {\left. { + 5u_{2}^{2} u_{4}^{4} + 3u_{2}^{6} + 3\alpha ^{2} u_{4}^{4} + \alpha u_{4}^{8} + 3\alpha u_{4}^{2} + u_{4}^{6} } \right) + 16u_{1}^{3} u_{2} x^{6} \left( {\alpha - \left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} \left( {2\zeta \left( {u_{2}^{2} + u_{4}^{2} - 1} \right) + 1} \right)} \right)} \right) \\ & \quad \left. { + 12u_{1} u_{2} x^{8} + 4x^{9} \left( { - \alpha u_{2}^{4} + u_{2}^{2} \left( {2\alpha u_{4}^{2} - 3} \right) + 3\left( {\alpha u_{4}^{4} + u_{4}^{2} } \right)} \right)} \right) \\ \end{aligned}$$
(32)
$$B=4{u}_{1}x\left(\alpha {u}_{1}^{4}{\left({u}_{2}^{2}+{u}_{4}^{2}\right)}^{2}+{u}_{1}^{2}{x}^{2}\left({\left({u}_{2}^{2}+{u}_{4}^{2}\right)}^{2}\left(2\zeta \left({u}_{2}^{2}+{u}_{4}^{2}-1\right)+1\right)-\alpha \right)-{x}^{4}\right)\left(\alpha {u}_{1}^{4}{\left({u}_{2}^{2}+{u}_{4}^{2}\right)}^{2}+{u}_{1}^{2}{x}^{2}\left(3\alpha +{\left({u}_{2}^{2}+{u}_{4}^{2}\right)}^{2}\left(\zeta \left(6{u}_{2}^{2}+6{u}_{4}^{2}-2\right)+1\right)\right)+3{x}^{4}\right)$$
(33)
$$ \begin{aligned} C & = - \left( {pu_{1}^{4} u_{2} x^{2} \left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} \left( { - \left( {\alpha u_{1}^{2} + x^{2} } \right)\left( {u_{1}^{2} \left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} + 3x^{2} } \right) - 2\zeta u_{1}^{2} x^{2} \left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} \left( {3u_{2}^{2} + 3u_{4}^{2} - 1} \right)} \right)} \right. \\ & \quad + 4u_{4} \left( {\alpha ^{2} u_{1}^{9} \left( { - \left( {u_{2}^{2} + u_{4}^{2} } \right)^{4} } \right) + u_{1}^{5} x^{4} \left( {\alpha ^{2} - 4\alpha u_{2}^{4} + 4\zeta \left( {u_{2}^{2} + u_{4}^{2} - 1} \right)\left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} \left( {\left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} - \alpha } \right)} \right.} \right. \\ & \quad \left. { - 8\alpha u_{2}^{2} u_{4}^{2} + 4\zeta ^{2} \left( {u_{2}^{2} + u_{4}^{2} - 1} \right)^{2} \left( {u_{2}^{2} + u_{4}^{2} } \right)^{4} + 4u_{2}^{6} u_{4}^{2} + 6u_{2}^{4} u_{4}^{4} + 4u_{2}^{2} u_{4}^{6} + u_{2}^{8} - 4\alpha u_{4}^{4} + u_{4}^{8} } \right) + 2u_{1}^{2} u_{2} x^{7} \left( {\left( {u_{2}^{2} + u_{4}^{2} } \right)} \right. \\ & \quad \left. {\left( { - 2\alpha ^{2} - 2\zeta \left( {u_{2}^{2} + u_{4}^{2} } \right)\left( {\alpha \left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} + 1} \right) + u_{2}^{2} + u_{4}^{2} } \right) - 3\alpha } \right) + 2u_{1}^{6} u_{2} x^{3} \left( {u_{2}^{2} + u_{4}^{2} } \right)\left( {2\zeta \left( {u_{2}^{2} + u_{4}^{2} } \right)^{3} \left( {\alpha \left( {2u_{2}^{2} + 2u_{4}^{2} - 1} \right) + 1} \right)} \right. \\ & \quad \left. { + \alpha \left( {\alpha \left( {u_{2}^{2} + u_{4}^{2} } \right) + \left( {u_{2}^{2} + u_{4}^{2} } \right)^{3} + 2} \right)} \right) + 4u_{1}^{3} x^{6} \left( {\alpha - \left( {u_{2}^{2} + u_{4}^{2} } \right)^{2} \left( {2\zeta \left( {u_{2}^{2} + u_{4}^{2} - 1} \right) + 1} \right)} \right) \\ & \quad \left. {\left. { + 4u_{1}^{4} u_{2} x^{5} \left( {u_{2}^{2} + u_{4}^{2} } \right)\left( {\alpha \left( {u_{2}^{2} + u_{4}^{2} } \right) + 1} \right) + 2\alpha ^{2} u_{1}^{8} u_{2} x\left( {u_{2}^{2} + u_{4}^{2} } \right)^{4} + 3u_{1} x^{8} - 2u_{2} x^{9} \left( {2\alpha \left( {u_{2}^{2} + u_{4}^{2} } \right) + 3} \right)} \right)} \right) \\ \end{aligned} $$
(34)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Roychowdhury, S. An Anisotropic Hyperelastic Inflated Toroidal Membrane in Lateral Contact with Two Flat Rigid Plates. Acta Mech. Solida Sin. 35, 1068–1081 (2022). https://doi.org/10.1007/s10338-022-00339-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00339-y

Keywords

Navigation