Skip to main content

Advertisement

Log in

Energy harvesting from the secondary resonances of a nonlinear piezoelectric beam under hard harmonic excitation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper investigates the dynamical response of a nonlinear piezoelectric energy harvester under a hard harmonic excitation and assesses its output power. The system is composed of a unimorph cantilever beam with a tip mass and exposed to an harmonic tip excitation with a hard forcing amplitude. First, the governing dimensionless nonlinear electromechanical ordinary differential equations (ODEs) are obtained. Next, the multiple scales method (MSM) is exploited to provide an approximate-analytical solution for the ODEs in hard and soft forcing scenarios. It is observed that, the hard force results in sub- and super-harmonic resonances. The MSM-based solutions are then validated by a numerical integration method and a good agreement is observed between the approximate-analytical and numerical results. Furthermore, utilizing the MSM-based solutions for the subharmonic, superharmonic, and soft primary resonances cases, the associated frequency and force response curves are constructed. It is revealed that the hard excitation leads to a remarkable voltage generation in the secondary resonances; this leads to a broadband energy harvesting. In addition, the time-domain electrical responses of the secondary resonances are also obtained and compared with each other. Finally, the three-dimensional graphs of the electrical power versus detuning parameter and time constant ratio in the cases of the secondary resonances are plotted. The results show that the optimum output power of the superharmonic resonance is considerably larger than the maximum power of the subharmonic resonance case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Syta A, Bowen CR, Kim HA, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8):1961–1970

    Article  Google Scholar 

  2. He Q, Daqaq MF (2016) Electric load optimization of a nonlinear mono-stable duffing harvester excited by white noise. Meccanica 51(5):1027–1039

    Article  MathSciNet  MATH  Google Scholar 

  3. Litak G, Friswell MI, Adhikari S (2016) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5):1017–1025

    Article  MathSciNet  MATH  Google Scholar 

  4. Beeby SP et al (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257

    Article  Google Scholar 

  5. Rostami AB, Armandei M (2017) Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies. Renew Sustain Energy Rev 70:193–214

    Article  Google Scholar 

  6. Abdelkefi A (2016) Aeroelastic energy harvesting: a review. Int J Eng Sci 100:112–135

    Article  MathSciNet  Google Scholar 

  7. Daqaq MF et al (2019) Micropower generation using cross-flow instabilities: a review of the literature and its implications. J Vib Acoust 141(3):030801

    Article  Google Scholar 

  8. Rezaei M, Talebitooti R (2019) Wideband PZT energy harvesting from the wake of a Bluff body in varying flow speeds. Int J Mech Sci 163:105135

    Article  Google Scholar 

  9. Liu S, Li P, Yang Y (2018) On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter. Meccanica 53(11):2807–2831

    Article  MathSciNet  Google Scholar 

  10. Silva-Leon J, Cioncolini A, Nabawy MR, Revell A, Kennaugh A (2019) Simultaneous wind and solar energy harvesting with inverted flags. Appl Energy 239:846–858

    Article  Google Scholar 

  11. Suzuki Y, Miki D, Edamoto M, Honzumi M (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20(10):104002

    Article  Google Scholar 

  12. Lallart M, Pruvost S, Guyomar D (2011) Electrostatic energy harvesting enhancement using variable equivalent permittivity. Phys Lett A 375(45):3921–3924

    Article  ADS  MATH  Google Scholar 

  13. Yang Z, Tan Y, Zu J (2017) A multi-impact frequency up-converted magnetostrictive transducer for harvesting energy from finger tapping. Int J Mech Sci 126:235–241

    Article  Google Scholar 

  14. Naseer R, Dai H, Abdelkefi A, Wang L (2017) Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Appl Energy 203:142–153

    Article  Google Scholar 

  15. Fan K, Zhang Y, Liu H, Cai M, Tan Q (2019) A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renew Energy 138:292–302

    Article  Google Scholar 

  16. Castagnetti D (2019) A simply tunable electromagnetic pendulum energy harvester. Meccanica 54(6):749–760

    Article  Google Scholar 

  17. Rezaei M, Khadem SE, Firoozy P (2017) Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects. Int J Eng Sci 118:1–15

    Article  MathSciNet  MATH  Google Scholar 

  18. Rezaei M, Talebitooti R, Friswell MI (2019) Efficient acoustic energy harvesting by deploying magnetic restoring force. Smart Mater Struct 28(10):105037

    Article  ADS  Google Scholar 

  19. Castagnetti D, Radi E (2018) A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment. Meccanica 53(11):2725–2742

    Article  Google Scholar 

  20. Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130(4):041002

    Article  Google Scholar 

  21. Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009

    Article  ADS  Google Scholar 

  22. Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Phys D 239(10):640–653

    Article  MATH  Google Scholar 

  23. Dhote S, Yang Z, Behdinan K, Zu J (2018) Enhanced broadband multi-mode compliant orthoplanar spring piezoelectric vibration energy harvester using magnetic force. Int J Mech Sci 135:63–71

    Article  Google Scholar 

  24. Roundy S, Zhang Y (2005) Toward self-tuning adaptive vibration-based microgenerators. In: Smart structures, devices, and systems II, vol 5649. International Society for Optics and Photonics, pp 373–385

  25. Wu W-J, Chen Y-Y, Lee B-S, He J-J, Peng Y-T (2006) Tunable resonant frequency power harvesting devices. In: Smart structures and materials 2006: damping and isolation, vol 6169. International Society for Optics and Photonics, p 61690A

  26. Huang S-C, Tsai C-Y (2016) Theoretical analysis of a new adjustable broadband PZT beam vibration energy harvester. Int J Mech Sci 105:304–314

    Article  Google Scholar 

  27. Alevras P, Theodossiades S, Rahnejat H (2018) On the dynamics of a nonlinear energy harvester with multiple resonant zones. Nonlinear Dyn 92:1–16

    Article  Google Scholar 

  28. Daqaq MF, Masana R, Erturk A, Quinn DD (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev 66(4):040801

    Article  ADS  Google Scholar 

  29. Deng H et al (2019) Poly-stable energy harvesting based on synergetic multistable vibration. Commun Phys 2(1):21

    Article  ADS  Google Scholar 

  30. Masana R, Daqaq MF (2012) Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J Appl Phys 111(4):044501

    Article  ADS  Google Scholar 

  31. Lin J-T, Walsh K, Alphenaar B (2013) Enhanced stochastic, subharmonic, and ultraharmonic energy harvesting. J Intell Mater Syst Struct 24(11):1324–1331

    Article  Google Scholar 

  32. Syta A, Litak G, Friswell MI, Adhikari S (2016) Multiple solutions and corresponding power output of a nonlinear bistable piezoelectric energy harvester. Eur Phys J B 89(4):99

    Article  ADS  MathSciNet  Google Scholar 

  33. Huguet T, Badel A, Lallart M (2017) Exploiting bistable oscillator subharmonics for magnified broadband vibration energy harvesting. Appl Phys Lett 111(17):173905

    Article  ADS  Google Scholar 

  34. Panyam M, Daqaq MF, Emam SA (2018) Exploiting the subharmonic parametric resonances of a buckled beam for vibratory energy harvesting. Meccanica 53(14):3545–3564

    Article  Google Scholar 

  35. Huguet T, Badel A, Druet O, Lallart M (2018) Drastic bandwidth enhancement of bistable energy harvesters: study of subharmonic behaviors and their stability robustness. Appl Energy 226:607–617

    Article  Google Scholar 

  36. Chen L, Pan S, Fei Y, Zhang W, Yang F (2019) Theoretical study of micro/nano-scale bistable plate for flexoelectric energy harvesting. Appl Phys A 125(4):242

    Article  ADS  Google Scholar 

  37. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  38. Abusoua A, Daqaq MF (2017) On using a strong high-frequency excitation for parametric identification of nonlinear systems. J Vib Acoust 139(5):051012

    Article  Google Scholar 

  39. Abusoua A, Daqaq MF (2018) Changing the nonlinear resonant response of an asymmetric mono-stable oscillator by injecting a hard high-frequency harmonic excitation. J Sound Vib 436:262–272

    Article  ADS  Google Scholar 

  40. Daqaq MF (2015) Characterizing the response of galloping energy harvesters using actual wind statistics. J Sound Vib 357:365–376

    Article  ADS  Google Scholar 

  41. Bibo A, Alhadidi AH, Daqaq MF (2015) Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters. J Appl Phys 117(4):045103

    Article  ADS  Google Scholar 

  42. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, New York

    Book  Google Scholar 

  43. Nayfeh AH (2008) Perturbation methods. Wiley, New York

    Google Scholar 

  44. Rezaei M, Talebitooti R, Rahmanian S (2019) Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances. Energy 182:369–380 (in English)

    Article  Google Scholar 

  45. Peng J, Xiang M, Li L, Sun H, Wang X (2019) Time-delayed feedback control of piezoelectric elastic beams under superharmonic and subharmonic excitations. Appl Sci 9(8):1557

    Article  Google Scholar 

  46. Elvin N, Erturk A (2013) Advances in energy harvesting methods. Springer, Berlin

    Book  Google Scholar 

  47. Stanton SC, Owens BA, Mann BP (2012) Harmonic balance analysis of the bistable piezoelectric inertial generator. J Sound Vib 331(15):3617–3627

    Article  ADS  Google Scholar 

Download references

Funding

This study was funded by Tarbiat Modares University (IG-39703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak E. Khadem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Khadem, S.E. & Friswell, M.I. Energy harvesting from the secondary resonances of a nonlinear piezoelectric beam under hard harmonic excitation. Meccanica 55, 1463–1479 (2020). https://doi.org/10.1007/s11012-020-01187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01187-1

Keywords

Navigation