Skip to main content

Advertisement

Log in

A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work presents a simple and innovative piezoelectric energy harvester, inspired by fractal geometry and intrinsically including dynamic magnification. Energy harvesting from ambient vibrations exploiting piezoelectric materials is an efficient solution for the development of self-sustainable electronic nodes. After an initial design step, the present work investigates the eigenfrequencies of the proposed harvester, both through a simple free vibration analysis model and through a computational modal analysis. The experimental validation performed on a prototype, confirms the accurate frequency response predicted by these models with five eigenfrequencies below 100 Hz. Despite the harvester has piezoelectric transducers only on a symmetric half of the top surface of the lamina, the rate of energy conversion is significant for all the investigated eigenfrequencies. Moreover, by adding a small ballast mass on the structure, it is possible to excite specific eigenfrequencies and thus improving the energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aldraihem O, Baz A (2011) Energy harvester with a dynamic magnifier. J Intell Mater Syst Struct 22(6):521–530

    Article  Google Scholar 

  2. Cornwell PJ (2005) Enhancing power harvesting using a tuned auxiliary structure. J Intell Mater Syst Struct 16(10):825–834

    Article  Google Scholar 

  3. Rastegar J, Haarhoff D, Pereira C, Nguyen H-L (2006) Piezoelectric-based energy harvesting power sources for gun-fired munitions. Smart Struct Mater 6174:61740W–61740W-6

    Google Scholar 

  4. Ma PS, Kim JE, Kim YY (2010) Power-amplifying strategy in vibration-powered energy harvesters. In: Proceedings of SPIE 7643, active and passive smart structures and integrated systems

  5. Lee S, Youn BD, Jung BC (2009) Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater Struct 18(9):95021

    Article  Google Scholar 

  6. Yang Z, Yang J (2009) Connected vibrating piezoelectric bimorph beams as a wide-band piezoelectric power harvester. J Intell Mater Syst Struct 20(5):569–574

    Article  Google Scholar 

  7. Erturk A, Renno JM, Inman D (2009) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J Intell Mater Syst Struct 20:529–544

    Article  Google Scholar 

  8. Xu JW, Shao WW, Kong FR, Feng ZH (2010) Right-angle piezoelectric cantilever with improved energy harvesting efficiency. Appl Phys Lett 96(15):152904

    Article  ADS  Google Scholar 

  9. Tang X, Zuo L (2011) Enhanced vibration energy harvesting using dual-mass systems. J Sound Vib 330(21):5199–5209

    Article  ADS  Google Scholar 

  10. Aladwani A, Arafa M, Aldraihem O, Baz A (2012) Cantilevered piezoelectric energy harvester with a dynamic magnifier. J Vib Acoust 134(3):31004

    Article  Google Scholar 

  11. Aladwani A, Aldraihem O, Baz A (2014) A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier. Mech Adv Mater Struct 21:566–578

    Article  Google Scholar 

  12. Nouh M, Aldraihem O, Baz A (2012) Energy harvesting of thermoacoustic-piezo systems with a dynamic magnifier. J Vib Acoust 134(6):61015

    Article  Google Scholar 

  13. Seo M-H, Choi D-H, Kim I-H, Jung H-J, Yoon J-B (2012) Multi-resonant energy harvester exploiting high-mode resonances frequency down-shifted by a flexible body beam. Appl Phys Lett 101:123903-1-4

    ADS  Google Scholar 

  14. Zhou W, Penamalli GR, Zuo L (2012) An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater Struct 21:15014

    Article  Google Scholar 

  15. Vasic D, Costa F (2013) Modelling of piezoelectric energy harvester with multi-mode dynamic magnifier with matrix representation. Int J Appl Electromagn Mech 43:237–255

    Google Scholar 

  16. Dhakar L, Liu H, Tay FEH, Lee C (2013) A new energy harvester design for high power output at low frequencies. Sens Actuators A Phys 199:344–352

    Article  Google Scholar 

  17. Kim JE, Kim YY (2013) Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester. AIP Adv 3(7):72103

    Article  Google Scholar 

  18. Sun KH, Kim Y-C, Kim JE (2014) A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion. AIP Adv 4(10):107125

    Article  ADS  Google Scholar 

  19. Sharma VK, Srikanth K, Viswanath AK (2014) Influence of cross-sectional area of a dynamic magnifier for vibration energy harvesting. In: Proceedings of 4th IRF international conference, vol 1, pp 69–72

  20. O’Donoghue D, Nico V, Frizzell R, Kelly G, Punch J (2014) A multiple-degree-of-freedom velocity-amplified vibrational energy harvester part a: experimental analysis. In: ASME 2014 conference on smart materials, adaptive structures and intelligent systems, SMASIS 2014, vol 2

  21. Nico V, O’Donoghue D, Frizzell R, Kelly G, Punch J (2014) A multiple degree-of-freedom velocity-amplified vibrational energy harvester: part b: modelling. In: ASME 2014 conference on smart materials, adaptive structures and intelligent systems, SMASIS 2014, vol 2

  22. Nico V, Boco E, Frizzell R, Punch J (2016) A high figure of merit vibrational energy harvester for low frequency applications. Appl Phys Lett 108(1):013902

    Article  ADS  Google Scholar 

  23. Castagnetti D (2011) Fractal-inspired multifrequency structures for piezoelectric harvesting of ambient kinetic energy. J Mech Des 133(11):111005

    Article  Google Scholar 

  24. Castagnetti D (2015) A piezoelectric based energy harvester with dynamic magnification. In: ASME 2015 conference on smart materials, adaptive structures and intelligent systems volume 2: integrated system design and implementation; structural health monitoring; bioinspired smart materials and systems; energy harvesting, p V002T07A001

  25. Castagnetti D (2012) Experimental modal analysis of fractal-inspired multi-frequency structures for piezoelectric energy converters. Smart Mater Struct 21(9):94009

    Article  Google Scholar 

  26. Castagnetti D (2013) A wideband fractal-inspired piezoelectric energy converter: design, simulation and experimental characterization. Smart Mater Struct 22:94024

    Article  Google Scholar 

  27. Castagnetti D (2015) Comparison between a wideband fractal-inspired and a traditional multicantilever piezoelectric energy converter. J Vib Acoust 137(1):11006

    Article  MathSciNet  Google Scholar 

  28. Simulia (2012) SIMULIA ABAQUS, user‘s manual. Dassault Systèmes Simulia Corp., Providence, RI, USA

  29. Kelly SG (2000) Fundamentals of mechanical vibrations, 2nd edn. McGraw-Hill Science, New York

    Google Scholar 

  30. Krodkiewski JM (2008) Mechanical vibration. The University of Melbourne, Parkville

    Google Scholar 

  31. P. P. Technology (2015) No title. P-876 DuraAct Patch Transducer, 2015. http://piceramic.com/product-detail-page/p-876-101790.html. Accessed: 12 Jan 2015

  32. Park TB (2015) Technical data sheet Hysol ® 3422, 2003. https://www.kaindltech.at/fileadmin/Datenblaetter/Datenblaetter/Loctite/3422-EN.pdf. Accessed: 12 Jan 2015

  33. Piezo PI, Technology C, S. P. Com-, Piezoelectric patch transducers for industry and research key technologies under one roof : a plus for our customers. http://www.piusa.us/pdf/PI_Catalog_DuraAct_Piezo_Patch_Transducer_Piezo_Composite_C1.pdf. Accessed 21 May 2018

  34. Electrodynamic Shaker (2018) http://www.dataphysics.com/. Accessed 18 Jan 2018

  35. Polytech AM (2015) Laser doppler vibrometer. http://www.polytec.com/eu/. Accessed 19 Jan 2015

  36. Miniature Accelerometers (2018) www.mmf.de. Accessed 18 Jan 2018

  37. Labview software (2018) www.ni.com/labview/. Accessed 19 Jan 2015

  38. Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13(5):1131–1142

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Castagnetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castagnetti, D., Radi, E. A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment. Meccanica 53, 2725–2742 (2018). https://doi.org/10.1007/s11012-018-0860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0860-0

Keywords

Navigation