Skip to main content

Advertisement

Log in

Performance analysis of parametrically and directly excited nonlinear piezoelectric energy harvester

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The performance of bimorph cantilever energy harvester subjected to horizontal and vertical excitations is investigated. The energy harvester is simulated as an inextensible piezoelectric beam with the Euler–Bernoulli assumptions. A horizontal base excitation along the axis of the beam is converted into the parametric excitation. The governing equations include geometric, inertia and electromechanical coupling nonlinearities. Using the Galerkin method, the electromechanical coupling Mathieu–Duffing equation is developed. Analytical solutions of the frequency response curves are presented by using the method of multiple scales. Some analytical results are obtained, which reveal the influence of different parameters such as the damping, load resistance and excitation amplitude on the output power of the energy harvester. In the case of parametric excitation, the effect of mechanical damping and load resistance on the initiation excitation threshold is studied. In the case of combination of parametric and direct excitations, the dynamic characteristics and performance of the nonlinear piezoelectric energy harvesters are studied. Our studies revealed that the bending deformation generated by direct excitation pushes the system out of axial deformation and overcomes the limitation of initial threshold of parametric excitation system. The combination of parametric and direct excitations, which compensates and complements each other, can be served as a better solution which enhances performance of energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Complex-valued function

a :

Response amplitude

b :

Width of beam

c :

Damping coefficient

\(\bar{{c}}\) :

Non-dimensional damping coefficient

\(C_\mathrm{p} \) :

Capacitance of the piezoelectric layers

\(d_{31} \) :

Piezoelectric strain coefficient

\(h_\mathrm{b} \) :

Thickness of the beam

J :

Jacobian matrix

L :

Length of the piezo-beam

\(m_t \) :

Mass per unit length of the beam

P :

Output power

\(R_\mathrm{L} \) :

Electrical load resistance

\(t(\tau )\) :

Time (\(\tau =\omega _0 t)\)

\(t_\mathrm{s} \) :

Thickness of the substrate layer

\(t_\mathrm{p} \) :

Thickness of each piezoelectric layer

u :

Horizontal direction displacement of piezo-beam relative to \({o}'{x}'{y}'\)

v :

Vertical direction displacement of piezo-beam relative to \({o}'{x}'{y}'\)

\(\bar{{v}}\) :

Dimensionless vertical displacement

V :

Output voltage

\(\bar{{V}}\) :

Dimensionless output voltage

\(w_x \) :

The horizontal direction displacement of the base relative to oxy

\(w_y \) :

The vertical direction displacement of the base relative to oxy

\(\bar{{w}}\) :

Dimensionless vertical displacement

\(Y_\mathrm{p} \) :

Young’s modulus of the piezoelectric layer

\(Y_\mathrm{s} \) :

Young’s modulus of the substrate layer

oxy :

Inertial coordinates

\({o}'{x}'{y}'\) :

Base-fixed coordinates

\(s,\xi \) :

Coordinate along neutral axis

cc:

The complex conjugate of the preceding term

\(\rho _\mathrm{p} \) :

Density of the piezoelectric layer

\(\rho _\mathrm{s} \) :

Density of the substrate layer

\(\varepsilon _{33}^T \) :

Permittivity at constant stress

\(\varepsilon _{33}^S \) :

Permittivity at constant strain

YI :

Bending stiffness of the piezo-beam

\(\alpha \) :

Electromechanical coupling coefficient

\(\Omega _x \) :

Parametric excited frequency

\(\Omega _y \) :

Direct excited frequency

\(\varphi _n (\bar{{s}})\) :

Eigenfunction of clamped-free beam

\(\bar{{\beta }}_n \) :

Frequency parameter of cantilever beam

\(\omega _n \) :

Natural frequency of the nth mode

\(\delta _x \) :

Non-dimensional parametric excited amplitude

\(\delta _y \) :

Non-dimensional direct excited amplitude

\(\psi \) :

Horizontal excited phase angle

\(\varepsilon \) :

Small perturbation parameter

\(\sigma \) :

Detuning parameter

References

  1. Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)

    Article  Google Scholar 

  2. Krommer, M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10, 668–680 (2001)

    Article  Google Scholar 

  3. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  MathSciNet  Google Scholar 

  4. Caliò, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., Oddo, C.M.: Piezoelectric energy harvesting solutions. Sensors 14(3), 4755–4790 (2014)

    Article  Google Scholar 

  5. Sodano, H.A., Inman, D.J., Park, G.: Generation and storage of electricity from power harvesting devices. J. Intell. Mater. Syst. Struct. 16, 67–75 (2005)

    Article  Google Scholar 

  6. Sodano, H.A., Inman, D.J., Park, G.: Comparison of piezoelectric energy harvesting devices for recharging batteries. J. Intell. Mater. Syst. Struct. 16, 799–807 (2005)

    Article  Google Scholar 

  7. Kim, H., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129–41 (2011)

    Article  Google Scholar 

  8. Zhu, D., Tudor, M.J., Beeby, S.P.: Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21(2), 022001 (2010)

    Article  Google Scholar 

  9. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007)

    Article  Google Scholar 

  10. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–42 (2004)

    Article  Google Scholar 

  11. duToit, N.E., Wardle, B.L., Kim, S.: Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71, 121–160 (2005)

    Article  Google Scholar 

  12. Erturk, A.: Electromechanical modeling of piezoelectric energy harvester. Ph.D. thesis, Virginia Polytechnic Institute and State University (2009)

  13. Paknejad, A., Rahimi, G.H., Salmani, H.: Analytical solution and numerical validation of piezoelectric energy harvester patch for various thin multilayer composite plates. Arch. Appl. Mech. 88, 1139–1161 (2018)

    Article  Google Scholar 

  14. Tang, L.P., Wang, J.G.: Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mech. 228, 3997–4015 (2017)

    Article  MathSciNet  Google Scholar 

  15. Tang, L.P., Wang, J.G.: Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier. Acta Mech. 229, 4643–4662 (2018)

    Article  MathSciNet  Google Scholar 

  16. Huang, S.C., Tsai, C.Y.: Theoretical analysis of a new adjustable broadband PZT beam vibration energy harvester. Int. J. Mech. Sci. 5(2016), 304–314 (2018)

    Google Scholar 

  17. Gafforelli, G., Ardito, R., Corigliano, A.: Improved one-dimensional model of piezoelectric laminates for energy harvesters including three dimensional effects. Compos. Struct. 127, 369–381 (2015)

    Article  Google Scholar 

  18. Jemai, A., Najar, F., Chafra, M., Ounaies, Z.: Modeling and parametric analysis of a unimorph piezocomposite energy harvester with interdigitated electrodes. Compos. Struct. 135, 176–190 (2016)

    Article  Google Scholar 

  19. Palosaari, J., Leinonen, M., Juuti, J., Jantunen, H.: The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever. Mech. Syst. Signal Process. 106, 114–118 (2018)

    Article  Google Scholar 

  20. Aboulfotoh, N., Twiefel, J.: On developing an optimal design procedure for a bimorph piezoelectric cantilever energy harvester under a predefined volume. Mech. Syst. Signal Process. 106, 1–12 (2018)

    Article  Google Scholar 

  21. Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Nonlinear Mech. 42, 577–587 (2007)

    Article  Google Scholar 

  22. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20, 1959–1967 (2009)

    Article  Google Scholar 

  23. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  24. Ferrari, M., Ferrari, V., Guizzettia, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators A 162, 425–431 (2010)

    Article  Google Scholar 

  25. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239, 640–653 (2010)

    Article  Google Scholar 

  26. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108, 074903 (2010)

    Article  Google Scholar 

  27. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67, 1221–1232 (2010)

    Article  MathSciNet  Google Scholar 

  28. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2014)

    Article  Google Scholar 

  29. Panyam, M., Masana, R., Daqaq, M.F.: On approximating the effective bandwidth of bi-stable energy harvesters. Int. J. Nonlinear Mech. 67, 153–163 (2014)

    Article  Google Scholar 

  30. Vijayan, K., Friswell, M.I., Khodaparast, H.H., Adhikari, S.: Non-linear energy harvesting from coupled impacting beams. Int. J. Mech. Sci. 96–97, 101–109 (2015)

    Article  Google Scholar 

  31. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801-1–040801-23 (2014)

    Google Scholar 

  32. Pasharavesh, A., Ahmadian, M.T., Zohoor, H.: Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams. Int. J. Mech. Mater. Des. 13, 499–514 (2017)

    Article  Google Scholar 

  33. Pasharavesh, A., Ahmadian, M.T.: Characterization of a nonlinear MEMS-based piezoelectric resonator for wideband micro power generation. Appl. Math. Model. 41, 121–142 (2017)

    Article  MathSciNet  Google Scholar 

  34. Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int. J. Eng. Sci. 111, 113–133 (2016)

    Article  MathSciNet  Google Scholar 

  35. Gafforelli, G., Xu, R., Corigliano, A., Kim, S.G.: Modelling of a bridge-shaped nonlinear piezoelectric energy harvester. J. Phys. Conf. Ser. 476, 012100 (2013)

    Article  Google Scholar 

  36. Gafforelli, G., Corigliano, A., Xu, R., Kim, S.G.: Experimental verification of a bridge-shaped, nonlinear vibration energy harvester. Appl. Phys. Lett. 105, 203901 (2014)

    Article  Google Scholar 

  37. Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy harvester. Mech. Syst. Signal Process. 90, 317–333 (2017)

    Article  Google Scholar 

  38. Wang, W., Cao, J., Mallick, D., Roy, S., Lin, J.: Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters. Mech. Syst. Signal Process. 108, 252–261 (2018)

    Article  Google Scholar 

  39. Zhu, P., Ren, X., Qin, W., Zhou, Z.: Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch. Appl. Mech. 87(1), 45–57 (2017)

    Article  Google Scholar 

  40. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)

    Article  Google Scholar 

  41. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: Parametrically excited MEMS vibration energy harvesters with design approaches to overcome the initiation threshold amplitude. J. Micromech. Microeng. 23, 114007 (2013)

    Article  Google Scholar 

  42. Jia, Y., Seshia, A.A.: An auto-parametrically excited vibration energy harvester. Sens. Actuators A 220, 69–75 (2014)

    Article  Google Scholar 

  43. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: A parametrically excited vibration energy harvester. J. Intell. Mater. Syst. Struct. 25(3), 278–289 (2014)

    Article  Google Scholar 

  44. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Mater. Struct. 23, 065011 (2014)

    Article  Google Scholar 

  45. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012)

    Article  MathSciNet  Google Scholar 

  46. Bitar, D., Kacem, N., Bouhaddi, N., Collet, M.: Collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations. Nonlinear Dyn. 82, 749–766 (2015)

    Article  MathSciNet  Google Scholar 

  47. Chiba, M., Shimazaki, N., Ichinohe, K.: Dynamic stability of a slender beam under horizontal–vertical excitations. J. Sound Vib. 333, 1442–1472 (2014)

    Article  Google Scholar 

  48. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)

    Article  Google Scholar 

  49. Fang, F., Xia, G.H., Wang, J.G.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34, 561–577 (2018)

    Article  MathSciNet  Google Scholar 

  50. Le, K.C.: The theory of piezoelectric shells. J. Appl. Math. Mech. 50(1), 98–105 (1986)

    Article  Google Scholar 

  51. Le, K.C.: Vibrations of Shells and Rods. Springer, Berlin (1999)

    Book  Google Scholar 

  52. Le, K.C., Yi, J.-H.: An asymptotically exact theory of the smart sandwich shells. Int. J. Eng. Sci. 106, 179–198 (2016)

    Article  MathSciNet  Google Scholar 

  53. Le, K.C.: An asymptotically exact theory of functionally graded piezoelectric shells. Int. J. Eng. Sci. 112, 42–62 (2017)

    Article  MathSciNet  Google Scholar 

  54. HaQuang, N., Mook, T., Plaut, R.H.: A non-linear analysis of the interactions between parametric and external excitations. J. Sound Vib. 118(3), 425–439 (1987)

    Article  Google Scholar 

  55. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  56. Hu, N., Burgueño, R.: Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24, 063001 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of PR China (No. 11172087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficients defined in Eqs. (9) and (10) are given as:

$$\begin{aligned} a_{1n} \left( {\bar{{s}}} \right)= & {} \int _{\bar{{s}}}^1 {\int _0^{{\bar{{\xi }}}}{{\phi '}_{n}^{2} \left( {\bar{{\eta }}} \right) \mathrm{d}\bar{{\eta }}\mathrm{d}\bar{{\xi }}}} ,\, a_{2n} \left( {\bar{{s}}} \right) =\int _0^{\bar{{s}}}{{\phi '}_{n}^{2} \left( {\bar{{\eta }}} \right) \mathrm{d}\bar{{\eta }}} \nonumber \\ b{ }_{1nn}= & {} \int _0^1 {\phi _n \phi _n \mathrm{d}\bar{{s}}} ,\,b{ }_{2nn}=\int _0^{1} {\left( {\bar{{\beta }}_{n}^{4} {\phi '}_{n}^{2} X_{n} +4{\phi '}_{n} {\phi ''}_{n} {\phi '''}_{n} +{\phi ''}_n ^{3}} \right) \phi _n \mathrm{d}\bar{{s}}} ,b{ }_{3nn}=\int _0^1 {{\phi ''}_{n} \phi _n \mathrm{d}\bar{{s}}}\nonumber \\ b{ }_{4nn}= & {} \int _0^1 {\bar{{s}}{\phi }''_n \phi _n \mathrm{d}\bar{{s}}} , b{ }_{5nn}=\int _0^1 {a_{1n} \left( {\bar{{s}}} \right) {\phi }''_n \phi _n \mathrm{d}\bar{{s}}} ,~b{ }_{6nn}=\int _0^1 {{\phi }'_n \phi _n \mathrm{d}\bar{{s}}} ,\,b{ }_{7nn}=\int _0^1 {a_{2n} \left( {\bar{{s}}} \right) {\phi }'_n \phi _n \mathrm{d}\bar{{s}}}\nonumber \\ b{ }_{8nn}= & {} \int _0^1 {\phi _n \mathrm{d}\bar{{s}}} , \quad b{ }_{9nn}=\left. {\frac{\mathrm{d}\phi _n \left( {\bar{{s}}} \right) }{\mathrm{d}\bar{{s}}}} \right| _{\bar{{s}}=1} ,\, b{ }_{10nn}=\left. {\frac{\mathrm{d}\left[ {\phi _n \left( {\bar{{s}}} \right) {\phi '}_{{n}}^{2} \left( {\bar{{s}}} \right) } \right] }{\mathrm{d}\bar{{s}}}} \right| _{\bar{{s}}=1} ,\,b{ }_{11nn}=\phi _{n} \left( 1 \right) {\phi '}_{n} \left( 1 \right) {\phi ''}_{n} \left( 1 \right) \nonumber \\ b_{12nn}= & {} \int _0^1 {{\phi }''_n } \mathrm{d}\bar{{s}},\,b_{13nn} =\int _0^1 {{\phi '}_{{n}}^{2} {\phi ''}_n \mathrm{d}\bar{{s}}}\nonumber \\ {\tilde{c}}= & {} \frac{1}{2}\bar{{c}},\bar{{\sigma }}_n =\frac{b{ }_{3nn}-b{ }_{4nn}-b{ }_{6nn}}{2b{ }_{1nn}},\beta _n =\frac{b{ }_{2nn}}{b{ }_{1nn}},\kappa _n =\frac{b{ }_{7nn}-b{ }_{5nn}}{b{ }_{1nn}} \nonumber \\ \zeta _n= & {} \frac{b{ }_{9nn}}{b{ }_{1nn}},\gamma _n =\frac{b{ }_{10nn}-2b{ }_{11nn}}{2b{ }_{1nn}},\bar{{\lambda }}_n =\frac{b_{8nn} }{b_{1nn} },\eta _n =b{ }_{12nn},\chi _n =\frac{3}{2}b_{13nn} \nonumber \\ \end{aligned}$$
(A1)
$$\begin{aligned} b_{1nn}= & {} \int _0^1 {\phi _n } \phi _n \mathrm{d}\bar{{s}}=1,b_{12nn} =\int _0^1 {{\phi }''_n \mathrm{d}\bar{{s}}=\left. {\frac{\mathrm{d}\phi _n (\bar{{s}})}{\mathrm{d}\bar{{s}}}} \right| } _{\bar{{s}}=1} =b_{9nn} \nonumber \\ b_{10nn}= & {} \frac{\mathrm{d}\left[ {{\phi '}_{n} (\bar{{s}}){\phi '}_{n} (\bar{{s}})\phi _n (\bar{{s}})} \right] }{\mathrm{d}\bar{{s}}} \big |_{\bar{{s}}=1} =2\phi _n (1){\phi '}_n (1){\phi ''}_{n} (1)+{\phi '}_{n}^{3} (1) \nonumber \\ b_{13nn}= & {} \int _0^1 {{\phi '}_n {\phi '}_n {\phi ''}_{n}} \mathrm{d}\bar{{s}}=\frac{1}{3}{\phi '}_n^3 (1),\eta _n =\zeta _n ,\chi _n =\gamma _n \end{aligned}$$
(A2)

Appendix B

The coefficients defined in Eqs. (26)–(31) are as following:

$$\begin{aligned} c_1= & {} \hat{{c}}+\bar{{\alpha }}^{2}\frac{\hat{{\zeta }}\eta \mu }{2(\mu ^{2}+\bar{{\omega }}^{2})},\,c_2 =\bar{{\alpha }}^{2}\frac{\chi \hat{{\zeta }}\mu }{8(\bar{{\omega }}^{2}+\mu ^{2})}+\bar{{\alpha }}^{2}\frac{\eta \mu \hat{{\gamma }}}{4(\bar{{\omega }}^{2}+\mu ^{2})} \\ c_3= & {} \bar{{\alpha }}^{2}\frac{\mu \hat{{\gamma }}\chi }{16(\bar{{\omega }}^{2}+\mu ^{2})}+\bar{{\alpha }}^{2}\frac{\mu \hat{{\gamma }}\chi }{32(9\bar{{\omega }}^{2}+\mu ^{2})},\,c_4 =\frac{\hat{{\delta }}_y }{2\bar{{\omega }}},c_5 =\bar{{\alpha }}^{2}\frac{\bar{{\omega }}\eta \hat{{\zeta }}}{2(\bar{{\omega }}^{2}+\mu ^{2})} \\ c_6= & {} \frac{3\hat{{\beta }}}{8\bar{{\omega }}}+\bar{{\alpha }}^{2}\frac{\hat{{\zeta }}\bar{{\omega }}\chi }{8(\bar{{\omega }}^{2}+\mu ^{2})}-\frac{1}{4}\bar{{\omega }}\hat{{\kappa }}+\bar{{\alpha }}^{2}\frac{\mu \bar{{\omega }}\eta }{4(\bar{{\omega }}^{2}+\mu ^{2})} \\ c_7= & {} \bar{{\alpha }}^{2}\frac{\mu \bar{{\omega }}\chi }{16(\bar{{\omega }}^{2}+\mu ^{2})}+\alpha _0 ^{2}\frac{3\mu \bar{{\omega }}\chi }{32(9\bar{{\omega }}^{2}+\mu ^{2})},\,c_8 =\frac{\hat{{\delta }}_x }{2\bar{{\omega }}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, G., Fang, F., Zhang, M. et al. Performance analysis of parametrically and directly excited nonlinear piezoelectric energy harvester. Arch Appl Mech 89, 2147–2166 (2019). https://doi.org/10.1007/s00419-019-01568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01568-3

Keywords

Navigation