Skip to main content
Log in

Sommerfeld effect in a two-disk rotor dynamic system at various unbalance conditions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Near resonance behavior of a shaft-rotor system driven by a motor with limited power gives rise to the Sommerfeld effect wherein the rotor speed gets stuck till a specific level of excitation power is reached. In this paper, a semi-analytical method is used to observe the Sommerfeld effect of a two-disk rotor system driven through a direct current motor. The effect of relative unbalance position on vibration amplitude of a two disk rotor-shaft system is studied in detail. We observe the change in critical power input for passage through resonance by changing the unbalance positions on the disks. We also investigate the case where two close resonance frequencies interfere with the jump phenomenon associated with the Sommerfeld effect. Prediction of critical power input in complex rotor system is highly essential. Else the system may be destroyed due to large vibration amplitudes generated during operations. In this article, drive and rotor dynamics are modeled together by using multi-energy domain bond graph approach and theoretically obtained steady-state characteristics are validated through transient simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. El-Badawy AA (2007) Behavioral investigation of a nonlinear nonideal vibrating system. J Vib Control 13(2):203–217

    Article  MathSciNet  MATH  Google Scholar 

  2. Kononeko VO (1964) Vibrating system with limited excitation. Nauka, Moscow (in Russian)

    Google Scholar 

  3. Nayfeh A, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  4. Sommerfeld A (1902) Beiträge Zum Dynamischen Ausbau Der Festigkeitslehe. Phys Zeitschr 3:266–286

    MATH  Google Scholar 

  5. Karthikeyan M, Bisoi A, Samantaray AK, Bhattacharyya R (2015) Sommerfeld effect characterization in rotors with non-ideal drive from ideal drive response and power balance. Mech Mach Theory 91:269–288

    Article  Google Scholar 

  6. Balthazar JM, Mook DT, Weber HI, Brasil RMLRF, Fenili A, Belato D, Felix JLP (2003) An overview on non-ideal vibrations. Meccanica 38:613–621

    Article  MATH  Google Scholar 

  7. Dantas MJH, Balthazar JM (2004) On local analysis of oscillations of a non-ideal and non-linear mechanical model. Meccanica 39(4):313–330

    Article  MathSciNet  MATH  Google Scholar 

  8. Bolla MR, Balthazar JM, Felix JLP, Mook DT (2007) On an approximate analytical solution to a nonlinear vibrating problem, excited by a nonideal motor. Nonlinear Dyn 50(4):841–847

    Article  MATH  Google Scholar 

  9. Felix JLP, Balthazar JM (2008) Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn 55(1–2):1–11

    MATH  Google Scholar 

  10. Samantaray AK (2008) Steady-state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dyn 56(4):443–451

    Article  MATH  Google Scholar 

  11. Felix JLP, Balthazar JM, Brasil RMLRF (2009) A short note on transverse vibrations of a shaft carrying two (or one) disk excited by a nonideal motor. J Comput Nonlinear Dyn 4(1):014501

    Article  Google Scholar 

  12. Samantaray AK, Dasgupta SS, Bhattacharyya R (2010) Bond graph modeling of an internally damped nonideal flexible spinning shaft. J Dyn Syst Meas Control 132(6):061502

    Article  Google Scholar 

  13. Dasgupta SS, Samantaray AK, Bhattacharyya R (2010) Stability of an internally damped non-ideal flexible spinning shaft. Int J Non Linear Mech 45(3):286–293

    Article  Google Scholar 

  14. Krasnopolskaya TS, Shvets AY (1993) Chaos in vibrating systems with a limited power-supply. Chaos 3(3):387–395

    Article  ADS  MATH  Google Scholar 

  15. Verichev NN, Verichev SN, Erofeyev VI (2008) Chaotic dynamics of simple vibrational systems. J Sound Vib 310(3):755–767

    Article  ADS  MATH  Google Scholar 

  16. Cvetićanin L (2010) Dynamics of the non-ideal mechanical systems: a review. J Serb Soc Comput Mech 4(2):75–86

    Google Scholar 

  17. Pantaleone J (2002) Synchronization of metronomes. Am J Phys 70(10):992–1000

    Article  ADS  Google Scholar 

  18. Blekhman II (1988) Synchronization in science and technology. ASME Press, New York

    Google Scholar 

  19. Nanha Djanan AA, Nana Nbendjo BR, Woafo P (2015) Self-synchronization of two motors on a rectangular plate and reduction of vibration. J Vib Control 21(11):2114–2123

    Article  Google Scholar 

  20. Balthazar JM, Felix JLP, Brasil RMLRF (2004) Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure. J Vib Control 10(12):1739–1748

    MATH  Google Scholar 

  21. Dimentberg MF, Cobb E, Mensching J (2001) Self-synchronization of transient rotations in multiple shaft systems. J Vib Control 7(2):221–232

    Article  MATH  Google Scholar 

  22. Dimentberg MF, McGovern L, Norton RL, Chapdelaine J, Harrison R (1997) Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn 13:171–187

    Article  MATH  Google Scholar 

  23. Kim YB, Noah ST, Choi YS (1991) Periodic response of two-disk rotors with bearing clearances. J Sound Vib 144:381–395

    Article  ADS  Google Scholar 

  24. Rao JS, Sharan AM (1994) The calculation of the natural frequencies of two-disk-rotor systems using the influence coefficient method including the gyroscopic effects. Mech Mach Theory 29:739–748

    Article  Google Scholar 

  25. Chiu YJ, Chen DZ (2011) The coupled vibration in a rotating two-disk rotor system. Int J Mech Sci 53(1):1–10

    Article  Google Scholar 

  26. Chouksey M, Dutt JK, Modak SV (2012) Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mech Mach Theory 48:81–93

    Article  Google Scholar 

  27. Ma H, Li H, Zhao X, Niu H, Wen B (2013) Effects of eccentric phase difference between two discs on oil-film instability in a rotor–bearing system. Mech Syst Signal Process 41(1–2):526–545

    Article  ADS  Google Scholar 

  28. Genta G (1985) Consistent matrices in rotor dynamics. Meccanica 20:235–248

    Article  MATH  Google Scholar 

  29. Filippov AP (1971) Vibrations of mechanical systems. National Lending Library for Science and Technology, Boston Spa

    Google Scholar 

  30. Dasgupta SS (2011) Sommerfeld effect in internally damped shaft-rotor systems, PhD Thesis, IIT Kharagpur

  31. Mukherjee A, Samantaray AK (1997) Umbra-Lagrange’s equations through bond graphs. In: Proceedings of the International Conference on Bondgraph Modelling, SIMULATION Series, vol 29, no. 1. Phoenix, AZ, pp 168–174

  32. Mukherjee A, Rastogi V, Dasgupta A (2009) Extension of Lagrangian-Hamiltonian mechanics for continuous systems—investigation of dynamics of a one-dimensional internally damped rotor driven through a dissipative coupling. Nonlinear Dyn 58(1–2):107–127

    Article  MathSciNet  MATH  Google Scholar 

  33. Gonçalves PJP, Silveira M, Petrocino EA, Balthazar JM (2016) Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica 51(9):2203–2214

    Article  MathSciNet  Google Scholar 

  34. Bou-Rabee NM, Marsden JE, Romero LA (2004) Tippe top inversion as a dissipation-induced instability. SIAM J Appl Dyn Syst 3(3):352–377

    Article  MathSciNet  MATH  Google Scholar 

  35. Krechetnikov R, Marsden JE (2006) On destabilizing effects of two fundamental non-conservative forces. Phys D Nonlinear Phenom 214(1):25–32

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Samantaray AK, Dasgupta SS, Bhattacharyya R (2010) Sommerfeld effect in rotationally symmetric planar dynamical systems. Int J Eng Sci 48(1):21–36

    Article  Google Scholar 

  37. Karnopp DC, Margolis DL, Rosenberg RC (2006) System dynamics: modeling and simulation of mechatronic systems. Wiley, New York

    Google Scholar 

  38. Borutzky W (2010) Bond graph methodology development and analysis of twodisciplinary dynamic system models. Springer, Berlin

    Google Scholar 

  39. Merzouki R, Samantaray AK, Pathak PM, Bouamama BO (2012) Intelligent mechatronic systems: modeling, control and diagnosis. Springer, Berlin

    Google Scholar 

  40. Mukherjee A, Karmakar R, Samantaray AK (2012) Bond graph in modeling, simulation and fault identification. CRC Press, Boca Raton, FL

    Google Scholar 

  41. Bisoi A, Samantaray AK, Bhattacharyya R (2017) Sommerfeld effect in a gyroscopic overhung rotor-disk system. Nonlinear Dyn 88:1565–1585

    Article  Google Scholar 

  42. Mukherjee A, Karmakar R, Samantaray AK (1999) Modelling of basic induction motors and source loading in rotor–motor systems with regenerative force field. Simul Pract Theory 7:563–576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Samantaray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

The disc locations are specified as \(a_{1} = 0.3{\text{ m}}\), \(b_{1} = 0.6{\text{ m}}\), \(a_{2} = 0.7{\text{ m}}\), \(b_{2} = 0.2{\text{ m}}\), with \(a_{1} + b_{1} = a_{2} + b_{2} = L\) (Fig. 20). The expressions for influence coefficients in Eqs. (1, 2) are given as follows:

$$\begin{aligned} u_{l11} = & \frac{{a_{1} b_{1} }}{6EIL}\left( {L^{2} - b_{1}^{2} - a_{1}^{2} } \right),\quad u_{l\phi 11} = \frac{{a_{1} }}{6EIL}\left( {6a_{1} L - 3a_{1}^{2} - 2L^{2} - a_{1}^{2} } \right),\quad u_{\phi l11} = \frac{{b_{1} }}{6EIL}\left( {L^{2} - b_{1}^{2} - 3a_{1}^{2} } \right), \\ u_{\phi 11} = & \frac{{ - \left( {6a_{1} L - 3a_{1}^{2} - 2L^{2} - 3a_{1}^{2} } \right)}}{6EIL},\quad u_{l22} = \frac{{a_{2} b_{2} }}{6EIL}\left( {L^{2} - b_{2}^{2} - a_{2}^{2} } \right),\quad u_{l\phi 22} = \frac{{a_{2} }}{6EIL}\left( {6a_{2} L - 3a_{2}^{2} - 2L^{2} - a_{2}^{2} } \right) \\ u_{\phi l22} = & \frac{{b_{2} }}{6EIL}\left( {L^{2} - b_{2}^{2} - 3a_{2}^{2} } \right),\quad u_{\phi 22} = \frac{{ - \left( {6a_{2} L - 3a_{2}^{2} - 2L^{2} - 3a_{2}^{2} } \right)}}{6EIL},\quad u_{l12} = \frac{{b_{1} }}{6EIL}\left( {\frac{L}{{b_{1} }}\left( {a_{2} - a_{1} } \right)^{3} + a_{2} \left( {L^{2} - b_{1}^{2} } \right) - a_{2}^{3} } \right) \\ u_{l\phi 12} = & \frac{{\left( {a_{2}^{3} - 3a_{2}^{2} L + 3a_{2} a_{1}^{2} - 3a_{1}^{2} L + 2a_{2} L^{2} } \right)}}{6EIL},\quad u_{\phi l12} = \frac{{\left( {3L(a_{2} - a_{1} )^{2} + b_{1} \left( {L^{2} - b_{1}^{2} } \right) - 3b_{1} a_{2}^{2} } \right)}}{6EIL}, \\ u_{\phi 12} = & \frac{{ - \left( {6a_{2} L - 3a_{1}^{2} - 2L^{2} - 3a_{2}^{2} } \right)}}{6EIL},\quad u_{l21} = \frac{{b_{2} a_{1} }}{6EIL}\left( {L^{2} - b_{2}^{2} - a_{1}^{2} } \right),\quad u_{l\phi 21} = \frac{{ - a_{1} }}{6EIL}\left( {6a_{2} L - 3a_{2}^{2} - 2L^{2} - a_{1}^{2} } \right) \\ u_{\phi l21} = & \frac{{b_{2} }}{6EIL}\left( {L^{2} - b_{2}^{2} - 3a_{1}^{2} } \right),\quad u_{\phi 21} = \frac{{ - \left( {6a_{2} L - 3a_{2}^{2} - 2L^{2} - 3a_{1}^{2} } \right)}}{6EIL}. \\ \end{aligned}$$
Fig. 20
figure 20

Load and deflection location definitions for computation of influence coefficients

Appendix 2

The sub-matrices of \(\left[ {\mathbf{A}} \right]_{16 \times 16}\) in Eq. (22) are detailed as follows:

$$\left[ {{\mathbf{A}}_{{\mathbf{1}}} } \right] = \left[ {\begin{array}{*{20}l} {\frac{{ - (R_{e} + \lambda_{i} K_{l1} )}}{{m_{1} }}} \hfill & {\frac{{ - (R_{l\phi } + \lambda_{i} K_{l\phi 1} )}}{{m_{1} }}} \hfill & 0 \hfill & 0 \hfill & {\frac{{ - K_{l1} }}{{m_{1} }}} \hfill & {\frac{{ - K_{l\phi 1} }}{{m_{1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l1} }}{{m_{1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l\phi 1} }}{{m_{1} }}} \hfill \\ {\frac{{ - (R_{l\phi } + \lambda_{i} K_{\phi l1} )}}{{I_{d1} }}} \hfill & {\frac{{ - (R_{e\phi } + \lambda_{i} K_{\phi 1} )}}{{I_{d1} }}} \hfill & 0 \hfill & {\frac{{ - \dot{\theta }I_{p1} }}{{I_{d1} }}} \hfill & {\frac{{ - K_{\phi l1} }}{{I_{d1} }}} \hfill & {\frac{{ - K_{\phi 1} }}{{I_{d1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi l1} }}{{I_{d1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi 1} }}{{I_{d1} }}} \hfill \\ 0 \hfill & 0 \hfill & {\frac{{ - (R_{e} + \lambda_{i} K_{l1} )}}{{m_{1} }}} \hfill & {\frac{{ - (R_{l\phi } + \lambda_{i} K_{l\phi 1} )}}{{m_{1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l1} }}{{m_{1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l\phi 1} }}{{m_{1} }}} \hfill & {\frac{{ - K_{l1} }}{{m_{1} }}} \hfill & {\frac{{ - K_{l\phi 1} }}{{m_{1} }}} \hfill \\ 0 \hfill & {\frac{{\dot{\theta }I_{p1} }}{{I_{d1} }}} \hfill & {\frac{{ - (R_{l\phi } + \lambda_{i} K_{\phi l1} )}}{{I_{d1} }}} \hfill & {\frac{{ - (R_{e\phi } + \lambda_{i} K_{\phi 1} )}}{{I_{d1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi l1} }}{{I_{d1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi 1} }}{{I_{d1} }}} \hfill & {\frac{{ - K_{\phi l1} }}{{I_{d1} }}} \hfill & {\frac{{ - K_{\phi 1} }}{{I_{d1} }}} \hfill \\ {\frac{{ - \lambda_{i} K_{l12} }}{{m_{2} }}} \hfill & {\frac{{ - \lambda_{i} K_{l\phi 12} }}{{m_{2} }}} \hfill & 0 \hfill & 0 \hfill & {\frac{{ - K_{l12} }}{{m_{2} }}} \hfill & {\frac{{ - K_{l\phi 12} }}{{m_{2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l12} }}{{m_{2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l\phi 12} }}{{m_{2} }}} \hfill \\ {\frac{{ - \lambda_{i} K_{\phi l12} }}{{I_{d2} }}} \hfill & {\frac{{ - \lambda_{i} K_{\phi 12} }}{{I_{d2} }}} \hfill & 0 \hfill & 0 \hfill & {\frac{{ - K_{\phi l12} }}{{I_{d2} }}} \hfill & {\frac{{ - K_{\phi 12} }}{{I_{d2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi l12} }}{{I_{d2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi 12} }}{{I_{d2} }}} \hfill \\ 0 \hfill & 0 \hfill & {\frac{{ - \lambda_{i} K_{l12} }}{{m_{2} }}} \hfill & {\frac{{ - \lambda_{i} K_{l\phi 12} }}{{m_{2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l12} }}{{m_{2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l\phi 12} }}{{m_{2} }}} \hfill & {\frac{{ - K_{l12} }}{{m_{2} }}} \hfill & {\frac{{ - K_{l\phi 12} }}{{m_{2} }}} \hfill \\ 0 \hfill & 0 \hfill & {\frac{{ - \lambda_{i} K_{\phi l12} }}{{I_{d2} }}} \hfill & {\frac{{ - \lambda_{i} K_{\phi 12} }}{{I_{d2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi l12} }}{{I_{d2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi 12} }}{{I_{d2} }}} \hfill & {\frac{{ - K_{\phi l12} }}{{I_{d2} }}} \hfill & {\frac{{ - K_{\phi 12} }}{{I_{d2} }}} \hfill \\ \end{array} } \right]$$
$$\left[ {{\mathbf{A}}_{{\mathbf{2}}} } \right] = \left[ {\begin{array}{*{20}l} {\frac{{ - \lambda_{i} K_{l21} }}{{m_{1} }}} \hfill & {\frac{{ - \lambda_{i} K_{l\phi 21} }}{{m_{1} }}} \hfill & 0 \hfill & 0 \hfill & {\frac{{ - K_{l21} }}{{m_{1} }}} \hfill & {\frac{{ - K_{l\phi 21} }}{{m_{1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l21} }}{{m_{1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l\phi 21} }}{{m_{1} }}} \hfill \\ {\frac{{ - \lambda_{i} K_{\phi l21} }}{{I_{d1} }}} \hfill & {\frac{{ - \lambda_{i} K_{\phi 21} }}{{I_{d1} }}} \hfill & 0 \hfill & 0 \hfill & {\frac{{ - K_{\phi l21} }}{{I_{d1} }}} \hfill & {\frac{{ - K_{\phi 21} }}{{I_{d1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi l21} }}{{I_{d1} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi 21} }}{{I_{d1} }}} \hfill \\ 0 \hfill & 0 \hfill & {\frac{{ - \lambda_{i} K_{l21} }}{{m_{1} }}} \hfill & {\frac{{ - \lambda_{i} K_{l\phi 21} }}{{m_{1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l21} }}{{m_{1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l\phi 21} }}{{m_{1} }}} \hfill & {\frac{{ - K_{l21} }}{{m_{1} }}} \hfill & {\frac{{ - K_{l\phi 21} }}{{m_{1} }}} \hfill \\ 0 \hfill & 0 \hfill & {\frac{{ - \lambda_{i} K_{\phi l21} }}{{I_{d1} }}} \hfill & {\frac{{\lambda_{i} K_{\phi 21} }}{{I_{d1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi l21} }}{{I_{d1} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi 21} }}{{I_{d1} }}} \hfill & {\frac{{ - K_{\phi l21} }}{{I_{d1} }}} \hfill & {\frac{{ - K_{\phi 21} }}{{I_{d1} }}} \hfill \\ {\frac{{ - (R_{e} + \lambda_{i} K_{l2} )}}{{m_{2} }}} \hfill & {\frac{{ - (R_{e\phi } + \lambda_{i} K_{l\phi 2} )}}{{m_{2} }}} \hfill & 0 \hfill & 0 \hfill & {\frac{{ - K_{l2} }}{{m_{2} }}} \hfill & {\frac{{ - K_{l\phi 2} }}{{m_{2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l2} }}{{m_{2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{l\phi 2} }}{{m_{2} }}} \hfill \\ {\frac{{ - (R_{l\phi } + \lambda_{i} K_{\phi l2} )}}{{I_{d2} }}} \hfill & {\frac{{ - (R_{e\phi } + \lambda_{i} K_{\phi 2} )}}{{I_{d2} }}} \hfill & 0 \hfill & {\frac{{\dot{\theta }I_{p2} }}{{I_{d2} }}} \hfill & {\frac{{ - K_{\phi l2} }}{{I_{d2} }}} \hfill & {\frac{{ - K_{\phi 2} }}{{I_{d2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi l2} }}{{I_{d2} }}} \hfill & {\frac{{ - \dot{\theta }\lambda_{i} K_{\phi 2} }}{{I_{d2} }}} \hfill \\ 0 \hfill & 0 \hfill & {\frac{{ - (R_{e} + \lambda_{i} K_{l2} )}}{{m_{2} }}} \hfill & {\frac{{ - (R_{l\phi } + \lambda_{i} K_{l\phi 2} )}}{{m_{2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l2} }}{{m_{2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{l\phi 2} }}{{m_{2} }}} \hfill & {\frac{{ - K_{l2} }}{{m_{2} }}} \hfill & {\frac{{ - K_{l\phi 2} }}{{m_{2} }}} \hfill \\ 0 \hfill & {\frac{{\dot{\theta }I_{p2} }}{{I_{d2} }}} \hfill & {\frac{{ - (R_{l\phi } + \lambda_{i} K_{\phi l2} )}}{{I_{d2} }}} \hfill & {\frac{{ - (R_{e\phi } + \lambda_{i} K_{\phi 2} )}}{{I_{d2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi l2} }}{{I_{d2} }}} \hfill & {\frac{{\dot{\theta }\lambda_{i} K_{\phi 2} }}{{I_{d2} }}} \hfill & {\frac{{ - K_{\phi l2} }}{{I_{d2} }}} \hfill & {\frac{{ - K_{\phi 2} }}{{I_{d2} }}} \hfill \\ \end{array} } \right]$$

\(\left[ {{\mathbf{A}}_{{\mathbf{3}}} } \right] = \left[ I \right]_{8 \times 8}\) and \(\left[ {{\mathbf{A}}_{{\mathbf{4}}} } \right] = \left[ 0 \right]_{8 \times 8}\).

Appendix 3

The 16 numbers of equations after separating the \(\cos \left( {\omega t} \right)\) and \(\sin \left( {\omega t} \right)\) parts as detailed in Sect. 2.3 are

$$\begin{aligned} & - m_{1} A_{1} \omega^{2} \cos \zeta_{1} - R_{e} A_{1} \omega \sin \zeta_{1} - R_{l\phi } B_{1} \omega \sin \xi_{1} + K_{l1} A_{1} \cos \zeta_{1} + K_{l\phi 1} B_{1} \cos \xi_{1} + K_{l21} A_{2} \cos \zeta_{2} \\ & \quad + K_{l\phi 21} B_{2} \cos \xi_{2} = me_{1} \omega^{2} \cos \left( {\delta_{1} } \right) \\ & m_{1} A_{1} \omega^{2} \sin \zeta_{1} - R_{e} A_{1} \omega \cos \zeta_{1} - R_{l\phi } B_{1} \omega \cos \xi_{1} - K_{l1} A_{1} \sin \zeta_{1} - K_{l\phi 1} B_{1} \sin \xi_{1} - K_{l21} A_{2} \sin \zeta_{2} \\ & \quad - K_{l\phi 21} B_{2} \sin \xi_{2} = - me_{1} \omega^{2} \sin \left( {\delta_{1} } \right) \\ & - I_{d1} B_{1} \omega^{2} \cos \xi_{1} - B_{1} R_{e\phi } \omega \sin \xi_{1} + \omega^{2} I_{p} B_{1} \cos \xi_{1} - R_{l\phi } A_{1} \omega \sin \zeta_{1} + K_{\phi l1} A_{1} \cos \zeta_{1} + K_{\phi 1} B_{1} \cos \xi_{1} \\ & \quad + K_{\phi l21} A_{2} \cos \zeta_{2} + K_{\phi 21} B_{2} \cos \xi_{2} = 0 \\ & I_{d1} B_{1} \omega^{2} \sin \xi_{1} - B_{1} R_{e\phi } \omega \cos \xi_{1} - \omega^{2} I_{p} B_{1} \sin \xi_{1} - R_{l\phi } A_{1} \omega \cos \zeta_{1} - K_{\phi l1} A_{1} \sin \zeta_{1} - K_{\phi 1} B_{1} \sin \xi_{1} \\ & \quad - K_{\phi l21} A_{2} \sin \zeta_{2} - K_{\phi 21} B_{2} \sin \xi_{2} = 0 \\ & - m_{1} A_{1} \omega^{2} \sin \zeta_{1} + R_{e} A_{1} \omega \cos \zeta_{1} + R_{l\phi } B_{1} \omega \cos \xi_{1} + K_{l1} A_{1} \sin \zeta_{1} + K_{l\phi 1} B_{1} \sin \xi_{1} + K_{l21} A_{2} \sin \zeta_{2} \\ & \quad + K_{l\phi 21} B_{2} \sin \xi_{2} = me_{1} \omega^{2} \sin \left( {\delta_{1} } \right) \\ & - m_{1} A_{1} \omega^{2} \cos \zeta_{1} - R_{e} A_{1} \omega \sin \zeta_{1} - R_{l\phi } B_{1} \omega \sin \xi_{1} + K_{l1} A_{1} \cos \zeta_{1} + K_{l\phi 1} B_{1} \cos \xi_{1} + K_{l21} A_{2} \cos \zeta_{2} \\ & \quad + K_{l\phi 21} B_{2} \cos \xi_{2} = me_{1} \omega^{2} \cos \left( {\delta_{1} } \right) \\ & - I_{d1} B_{1} \omega^{2} \sin \xi_{1} + B_{1} R_{e\phi } \omega \cos \xi_{1} + \omega^{2} I_{p} B_{1} \sin \xi_{1} + R_{l\phi } A_{1} \omega \cos \zeta_{1} + K_{\phi l1} A_{1} \sin \zeta_{1} + K_{\phi 1} B_{1} \sin \xi_{1} \\ & \quad + K_{\phi l21} A_{2} \sin \zeta_{2} + K_{\phi 21} B_{2} \sin \xi_{2} = 0 \\ & - I_{d1} B_{1} \omega^{2} \cos \xi_{1} - B_{1} R_{e\phi } \omega \sin \xi_{1} + \omega^{2} I_{p} B_{1} \cos \xi_{1} - R_{l\phi } A_{1} \omega \sin \zeta_{1} + K_{\phi l1} A_{1} \cos \zeta_{1} + K_{\phi 1} B_{1} \cos \xi_{1} \\ & \quad + K_{\phi l21} A_{2} \cos \zeta_{2} + K_{\phi 21} B_{2} \cos \xi_{2} = 0 \\ & - m_{2} A_{2} \omega^{2} \cos \zeta_{2} - R_{e} A_{2} \omega \sin \zeta_{2} - R_{l\phi } B_{2} \omega \sin \xi_{2} + K_{l12} A_{1} \cos \zeta_{1} + K_{l\phi 12} B_{1} \cos \xi_{1} + K_{l2} A_{2} \cos \zeta_{2} \\ & \quad + K_{l\phi 2} B_{2} \cos \xi_{2} = me_{2} \omega^{2} \sin \left( {\delta_{2} } \right) \\ & m_{2} A_{2} \omega^{2} \sin \zeta_{2} - R_{e} A_{2} \omega \cos \zeta_{2} - R_{l\phi } B_{2} \omega \cos \xi_{2} - K_{l12} A_{1} \sin \zeta_{1} - K_{l\phi 12} B_{1} \sin \xi_{1} - K_{l2} A_{2} \sin \zeta_{2} \\ & \quad - K_{l\phi 2} B_{2} \sin \xi_{2} = me_{2} \omega^{2} \cos \left( {\delta_{2} } \right) \\ & - I_{d2} B_{2} \omega^{2} \cos \xi_{2} - B_{2} R_{e\phi } \omega \sin \xi_{1} + \omega^{2} I_{p} B_{2} \cos \xi_{2} - R_{l\phi } A_{2} \omega \sin \zeta_{2} + K_{\phi l12} A_{1} \cos \zeta_{1} + K_{\phi 12} B_{1} \cos \xi_{1} \\ & \quad + K_{\phi l2} A_{2} \cos \zeta_{2} + K_{\phi 2} B_{2} \cos \xi_{2} = 0 \\ & I_{d2} B_{2} \omega^{2} \sin \xi_{2} - B_{2} R_{e\phi } \omega \cos \xi_{2} - \omega^{2} I_{p} B_{2} \sin \xi_{2} - R_{l\phi } A_{2} \omega \cos \zeta_{2} - K_{\phi l12} A_{1} \sin \zeta_{1} - K_{\phi 12} B_{1} \sin \xi_{1} \\ & \quad - K_{\phi l2} A_{2} \sin \zeta_{2} - K_{\phi 2} B_{2} \sin \xi_{2} = 0 \\ & - m_{2} A_{2} \omega^{2} \sin \zeta_{2} + R_{e} A_{2} \omega \cos \zeta_{2} + R_{l\phi } B_{2} \omega \cos \xi_{2} + K_{l12} A_{1} \sin \zeta_{1} + K_{l\phi 12} B_{1} \sin \xi_{1} + K_{l2} A_{2} \sin \zeta_{2} \\ & \quad + K_{l\phi 2} B_{2} \sin \xi_{2} = me_{2} \omega^{2} \sin \left( {\delta_{2} } \right) \\ & - m_{2} A_{2} \omega^{2} \cos \zeta_{2} - R_{e} A_{2} \omega \sin \zeta_{2} - R_{l\phi } B_{2} \omega \sin \xi_{2} + K_{l12} A_{1} \cos \zeta_{1} + K_{l\phi 12} B_{1} \cos \xi_{1} + K_{l2} A_{2} \cos \zeta_{2} \\ & \quad + K_{l\phi 2} B_{2} \cos \xi_{2} = me_{2} \omega^{2} \cos \left( {\delta_{2} } \right) \\ & - I_{d2} B_{2} \omega^{2} \sin \xi_{2} + B_{2} R_{e\phi } \omega \cos \xi_{2} + \omega^{2} I_{p} B_{2} \sin \xi_{2} + R_{l\phi } A_{2} \omega \cos \zeta_{2} + K_{\phi l12} A_{1} \sin \zeta_{1} + K_{\phi 12} B_{1} \sin \xi_{1} \\ & \quad + K_{\phi l2} A_{2} \sin \zeta_{2} + K_{\phi 2} B_{2} \sin \xi_{2} = 0 \\ & - I_{d2} B_{2} \omega^{2} \cos \xi_{2} - B_{2} R_{e\phi } \omega \sin \xi_{1} + \omega^{2} I_{p} B_{2} \cos \xi_{2} - R_{l\phi } A_{2} \omega \sin \zeta_{2} + K_{\phi l12} A_{1} \cos \zeta_{1} + K_{\phi 12} B_{1} \cos \xi_{1} \\ & \quad + K_{\phi l2} A_{2} \cos \zeta_{2} + K_{\phi 2} B_{2} \cos \xi_{2} = 0 \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisoi, A., Samantaray, A.K. & Bhattacharyya, R. Sommerfeld effect in a two-disk rotor dynamic system at various unbalance conditions. Meccanica 53, 681–701 (2018). https://doi.org/10.1007/s11012-017-0757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0757-3

Keywords

Navigation