Skip to main content
Log in

Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work presents the development of a discrete parameter model consisting of a concentrated mass which is supported by a set of springs and dampers positioned in two orthogonal directions, such that the mass can move horizontally and vertically in a plane. A non-ideal motor is attached to the mass such that the phenomenon of resonance capture can occur. Resonance capture occurs in structures with low damping which are attached to rotating machines with limited power supply. When resonance capture occurs, the mean angular velocity of the motor remains constant and the displacement of the structure increases. An investigation on the influence of the two orthogonal resonance frequencies is presented. It was found that this model can illustrate the dynamics of a more complex structure consisting of a portal frame coupled to a non-ideal unbalanced motor. Experimental tests are used to support numerical simulations and the analytical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Balthazar JM, Mook DT, Weber HI, Brasil RM, Fenili A, Belato D, Felix J (2003) An overview on non-ideal vibrations. Meccanica 38(6):613–621

    Article  MATH  Google Scholar 

  2. Bishop SR, Galvanetto U (1993) The behaviour of nonlinear oscillators subjected to ramped forcing. Meccanica 28(3):249–256

    Article  MATH  Google Scholar 

  3. Dhondt G (2004) The finite element method for three-dimensional thermomechanical applications. Wiley Online Library

  4. Felix JLP, Balthazar JM (2009) Comments on a nonlinear and nonideal electromechanical damping vibration absorber, sommerfeld effect and energy transfer. Nonlinear Dyn 55(1–2):1–11

    MathSciNet  MATH  Google Scholar 

  5. Felix JLP, Balthazar JM, Brasil RM (2005) On saturation control of a non-ideal vibrating portal frame foundation type shear-building. J Vib Control 11(1):121–136

    Article  MATH  Google Scholar 

  6. Geuzaine C, Remacle JF (2009) Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  7. Gonçalves PJP, Silveira M, Pontes BR Jr, Balthazar JM (2014) The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis. J Sound Vibration 333(20):5115–5129

    Article  ADS  Google Scholar 

  8. Hairer E, Wanner G (1996) Solving ordinary differential equations II: stiff and differential-algebraic problems. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Kerschen G, McFarland DM, Kowtko JJ, Lee YS, Bergman LA, Vakakis AF (2007) Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J Sound Vib 299(4):822–838

    Article  ADS  MATH  Google Scholar 

  10. Krasnopolskaya T (2006) Chaos in acoustic subspace raised by the sommerfeld-kononenko effect. Meccanica 41(3):299–310

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee YS, Kerschen G, Vakakis AF, Panagopoulos P, Bergman L, McFarland DM (2005) Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys D: Nonlinear Phenom 204(1):41–69

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Palacios J, Balthazar J, Brasil R (2002) On non-ideal and non-linear portal frame dynamics analysis using bogoliubov averaging method. J Braz Soc Mech Sci 24(4):257–265

    Article  Google Scholar 

  13. Quinn D, Rand R, Bridge J (1995) The dynamics of resonant capture. Nonlinear Dyn 8:1–20

    Article  MathSciNet  Google Scholar 

  14. Quinn DD (1997) Resonance capture in a three degree-of-freedom mechanical system. Nonlinear Dyn 14(4):309–333

    Article  MathSciNet  MATH  Google Scholar 

  15. Sommerfeld A (1902) Beiträge zum dynamischen ausbau der festigkeitslehe. Physikal Zeitschr 3:266–286

    MATH  Google Scholar 

  16. Zniber A, Quinn DD (2006) Resonance capture in a damped three-degree-of-freedom system: experimental and analytical comparison. Int J Non-Linear Mech 41(10):1128–1142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. P. Gonçalves.

Appendix

Appendix

The equations of motion in terms of the uncoupled accelerations are given in Eqs. 17, 18 and 19.

$$\begin{aligned} \ddot{x}= & {} -\frac{\mu _1\mathrm {sin}\left( \phi \right) {\mathfrak{M}}({\dot{\phi}})}{J_1\left( \mu _1\mu _2-1\right) } +\frac{\mu _1\mu _2\mathrm {cos}\left( \phi \right) \mathrm {sin}\left( \phi \right) \left( \mu _1\mathrm {sin}\left( \phi \right) \dot{\phi }^2-F_y\right) }{\mu _1\mu _2-1}+\frac{\left( \mu _1\mu _2{\mathrm {cos}\left( \phi \right) }^{2}-1\right) \left( \mu _1\mathrm {cos}\left( \phi \right) \dot{\phi }^2-F_x\right) }{\mu _1\mu _2-1} \end{aligned}$$
(17)
$$\begin{aligned} \ddot{y}= & {} \frac{\mu _1\mathrm {cos}\left( \phi \right) {\mathfrak{M}}({\dot{\phi}})}{J_1\left( \mu _1\mu _2-1\right) } +\frac{\left( \mu _1\mu _2{\mathrm {sin}\left( \phi \right) }^{2}-1\right) \left( \mu _1\mathrm {sin}\left( \phi \right) \dot{\phi }^2-F_y\right) }{\mu _1\mu _2-1}+\frac{\mu _1\mu _2\mathrm {cos}\left( \phi \right) \mathrm {sin}\left( \phi \right) \left( \mu _1\mathrm {cos}\left( \phi \right) \dot{\phi }^2-F_x\right) }{\mu _1\mu _2-1} \end{aligned}$$
(18)
$$\begin{aligned} \ddot{\phi }= & {} -\frac{{\mathfrak{M}}(\dot{\phi })}{J_1\left( \mu _1\mu _2-1\right) } +\frac{\mu _2\mathrm {cos}\left( \phi \right) \left( \mu _1\mathrm {sin}\left( \phi \right) \dot{\phi }^2-F_y\right) }{\mu _1\mu _2-1}-\frac{\mu _2\mathrm {sin}\left( \phi \right) \left( \mu _1\mathrm {cos}\left( \phi \right) \dot{\phi }^2-F_x\right) }{\mu _1\mu _2-1} \end{aligned}$$
(19)

in which,

$$\begin{aligned} F_x\,= & \omega _x^2 x +2\xi _x\omega _x \dot{x} \end{aligned}$$
(20)
$$\begin{aligned} F_y\,= & \omega _y^2 x +2\xi _y\omega _y \dot{y} \end{aligned}$$
(21)
$$\begin{aligned} J_1\,= & J_0 + mr^2 \end{aligned}$$
(22)
$$\begin{aligned} \mu _1= & \frac{mr}{M+m} \end{aligned}$$
(23)
$$\begin{aligned} \mu _2= & \frac{mr}{J_1} \end{aligned}$$
(24)

1.1 Encoder

Figure 22 shows the optical sensor used to measure the angular velocity of the motor during the experimental tests.

Fig. 22
figure 22

Optical sensor used to measure the angular velocity in the motor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, P.J.P., Silveira, M., Petrocino, E.A. et al. Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica 51, 2203–2214 (2016). https://doi.org/10.1007/s11012-015-0349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0349-z

Keywords

Navigation