Skip to main content

Three Kinds of Sommerfeld Effect in Rotor Dynamics

  • Chapter
  • First Online:
Nonlinear Vibrations Excited by Limited Power Sources

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 116))

Abstract

When transverse or torsional vibration amplitudes in a rotor dynamic system is high, energy is often drawn from the drive to sustain those motions. Therefore, the part of the drive energy available for spinning the rotor reduces in that condition. This can lead to perpetual or transient capture of the rotor speed in the regime where large amplitude vibrations occur. A critical amount of additional drive power is often needed to escape the capture of the rotor speed and such an escape is often associated with a sudden jump to a higher rotor speed and reduction in the vibration amplitudes, which is formally recognised as the Sommerfeld effect. Till now, Sommerfeld effect and resonance capture has been studied for rotor dynamic systems with unbalanced rotor disc under synchronous whirl condition. In this chapter, it will be shown that two more kinds of Sommerfeld effects can exist even if the rotor shaft and disc are perfectly balanced. One of those is related to high amplitude transverse asynchronous whirl of the non-circular rotor shaft due to parametric instability. The other is related to resonance capture in torsional vibrations of the transmission shaft in a universal joint driveline. In this chapter, three simple academic examples have been considered for each of these kinds of Sommerfeld effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. El-Badawy, A.A.: Behavioral investigation of a nonlinear nonideal vibrating system. J. Vib. Control 13(2), 203–217 (2007). ISSN 1077–5463. https://doi.org/10.1177/1077546307073674

  2. Kononenko, V.O.: Vibrating Systems with Limited Excitation [in Russian]. Nauka, Moscow (1964)

    Google Scholar 

  3. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley-Interscience, NY (1979)

    Google Scholar 

  4. Sommerfeld, A.: Beiträge Zum Dynamischen Ausbau Der Festigkeitslehe. Physikal Zeitschr 3, 266–286 (1902)

    MATH  Google Scholar 

  5. Eckert, M.: The Sommerfeld effect: theory and history of a remarkable resonance phenomenon. Europ. J. Phys. 17(5), 285–289 (1996)

    Article  Google Scholar 

  6. Kononenko, V.O.: Vibrating Systems with Limited Excitation, English Translation from Russian. (Illife Books) (1969)

    Google Scholar 

  7. Timoshenko, S.: Vibration Problems in Engineering. Van Nostrand, Princeton, NJ (1961)

    Google Scholar 

  8. Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)

    Google Scholar 

  9. Alifov, A.A., Frolov, K.V.: Interaction of Non-linear Oscillatory Systems with Energy Sources. Taylor & Francis, London (1990)

    Google Scholar 

  10. Hübner, W.: Die Wechsetwirkung zwischen Schwinger und Antrieb bei Schwingungen. Ingenieur-Archive 34, 411–422 (1965)

    Article  MATH  Google Scholar 

  11. Rand, R.H., Kinsey, R.J., Mingori, D.L.: Dynamics of spinup through resonance. Int. J. Non-Linear Mech. 27(3), 489–502 (1992)

    Article  MATH  Google Scholar 

  12. Ryzhik, A., Amer, T., Duckstein, H., Sperling, L.: Zum Sommerfeldeffect beim selbsttätigen Auswuchten in einer Ebene. Tech. Mech. 21(4), 297–312 (2001)

    Google Scholar 

  13. Yamanaka, H., Murakami, S.: Optimum designs of operating curves for rotating shaft systems with limited power supplier. In: Chung, H. (ed.), Current Topics in Structural Mechanics, pp. 181–185 (1989)

    Google Scholar 

  14. Christ, H.: Stationärer und Instatioärer Betrieb Eines Federnd Gelagerten, Unwuchtigen Motors, Ph.D. Thesis, Universität Karlsruhe (1966)

    Google Scholar 

  15. Frolov, K.V., Krasnopol’skaya, T.S.: Sommerfeld effect in systems without internal damping. Prikladnaya Mekhanika 23(12), 19–24 (1987)

    MATH  Google Scholar 

  16. Dimentberg, M.F., McGovern, L., Norton, R.L., Chapdelaine, J., Harrison, R.: Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn. 13, 171–187 (1997)

    Article  MATH  Google Scholar 

  17. Cveticanin, L.: Dynamics of the non-ideal mechanical systems: a review. J. Serbian Soc. Comput. Mech. 4(2), 75–86 (2010)

    Google Scholar 

  18. Samantaray, A.K., Dasgupta, S., Bhattacharyya, R.: Sommerfeld effect in rotationally symmetric planar dynamical systems. Int. J. Eng. Sci. 48(1), 21–36 (2010)

    Article  Google Scholar 

  19. Dasgupta, S.S., Samantaray, A.K., Bhattacharyya, R.: Stability of an internally damped non-ideal flexible spinning shaft. Int. J. Non-linear Mech. 45(3), 286–293 (2010)

    Article  Google Scholar 

  20. Dimentberg, M.F.: Vibration of a rotating shaft with randomly varying internal damping. J. Sound Vib. 285(3), 759–765 (2005). https://doi.org/10.1016/j.jsv.2004.11.025

    Article  MathSciNet  Google Scholar 

  21. Kovriguine, D.A.: Synchronization and sommerfeld effect as typical resonant patterns. Arch. Appl. Mech. 82(5), 591–604 (2012)

    Article  MATH  Google Scholar 

  22. Hu, W.H., Thöns, S., Rohrmann, R.G., Said, S., Rücker, W.: Vibration-based structural health monitoring of a wind turbine system. Part I: Reson. Phenomenon. Eng. Struct. 89, 260–272 (2015)

    Google Scholar 

  23. Blekhman, I.I., Kremer, E.: Vibrational resistance to vehicle motion due to road unevenness. J. Sound Vib. 405, 306–313 (2017)

    Article  Google Scholar 

  24. Sinha, A., Bharti, S.K., Samantaray, A.K., Chakraborty, G., Bhattacharyya, R.: Sommerfeld effect in an oscillator with a reciprocating mass. Nonlinear Dyn. 93(3), 1719–1739 (2018)

    Article  Google Scholar 

  25. Balthazar, J.M., Mook, D.T., Weber, H.I., Fenili, A., Belato, D., de Mattos, M.C., Wieczorek, S.: On vibrating systems with a limited power supply and their applications to engineering sciences. In: Honig, C.S. (ed.) 49th Brazilian Seminar of Mathematical Analysis, pp. 137–277. State University of Campinas, Campinas, SP, Brazil (1999)

    Google Scholar 

  26. Balthazar, J.M., Mook, D.T.: Brasil, R.M.L.R.F., Weber, H.I., Fenili, A., Belato, D., Felix, J.L.P., Recent results on vibrating problems with limited power supply. In: Awrejcewicz, J., Brabski, J., Nowakowski, J. (eds.) Sixth Conference on Dynamical Systems Theory and Applications, pp. 27–50. Lodz, Poland (2001)

    Google Scholar 

  27. Balthazar, J.M., Mook, D.T., Brasil, R.M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P., Weber, H.I.: Recent results on vibrating problems with limited power supply. Meccanica 330(7), 1–9 (2002)

    Google Scholar 

  28. Balthazar, J.M., Brasil, R.M.L.R.F., Garzeri, F.J.: On non-ideal simple portal frame structural model: experimental results under a non-ideal excitation. Appl. Mech. Mater. 1–2, 51–58 (2004)

    Google Scholar 

  29. Dantas, M.J.H., Balthazar, J.M.: On the appearance of a Hopf bifurcation in a non-ideal mechanical problem. Mech. Res. Commun. 30(5), 493–503 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bolla, M.R., Balthazar, J.M., Felix, J.L.P., Mook, D.T.: On an approximate analytical solution to a nonlinear vibrating problem, excited by a nonideal motor. Nonlinear Dyn. 50(4), 841–847 (2007)

    Article  MATH  Google Scholar 

  31. numerical and analytical approaches: Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F. Comments on nonlinear dynamics of a non-ideal duffing-rayleigh oscillator. J. Sound Vib. 319, 1136–1149 (2009)

    Article  Google Scholar 

  32. Bharti, S.K., Samantaray, A.K.: Resonant capture and Sommerfeld effect due to torsional vibrations in a double Cardan joint driveline. Commun. Nonlinear Sci. Numer. Simul. 97, 105728 (2021)

    Google Scholar 

  33. Taylor, H.D.: Critical-speed behavior of unsymmetrical shafts. J. Appl. Mech. 7(2), 71–79 (1940)

    Article  MATH  Google Scholar 

  34. Dimentberg, F.M.: Flexural Vibrations of Rotating Shaft. Butterworths, London (1961)

    Google Scholar 

  35. Brosens, P.J., Crandall, S.H.: Whirling of unsymmetrical rotors. Trans. ASME. J. Appl. Mech. 28(3), 355–362 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yamamoto, T., Ota, H.: On the unstable vibrations of the shaft carrying an unsymmetrical rotor. J. Appl. Mech. 31(3), 515–522 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yamamoto, T., Yasuda, K.: Unstable Vibrations of an unsymmetrical rotor supported by flexible bearing pedestals. Bullet. JSME 15(87), 1063–1073 (1972)

    Article  Google Scholar 

  38. Ikeda, T., Murakami, S.: Dynamic response and stability of a rotating asymmetric shaft mounted on a flexible base. Nonlinear Dyn. 20(1), 1–19 (1999)

    Article  MATH  Google Scholar 

  39. Srinath, R., Sarkar, A., Sekhar, A.S.: Instability of asymmetric shaft system. J. Sound Vib. 362, 276–291 (2016)

    Article  Google Scholar 

  40. Foote, W.R., Poritsky, H., Slade, J.J.: Critical speeds of a rotor with unequal shaft flexibilities, mounted in bearings of unequal flexibility—I. J. Appl. Mech. 10, A77–A84 (1943)

    Article  Google Scholar 

  41. Messal, E.E., Bonthron, R.J.: Subharmonic rotor instability due to elastic asymmetry. J. Eng. Indus. 94(1), 185–192 (1972)

    Article  Google Scholar 

  42. Ardayfio, D., Frohrib, D.A.: Instabilities of an asymmetric rotor with asymmetric shaft mounted on symmetric elastic supports. Trans. ASME J. Eng. Indus. 98(4), 1161–1165 (1976)

    Article  Google Scholar 

  43. Lee, C.W.: Vibration Analysis of Rotors. Springer Science & Business Media, 21 (1993)

    Google Scholar 

  44. Boru, F.E.: Numerical and Experimental Response and Stability Investigations of Anisotropic Rotor-Bearing Systems. Kassel University press GmbH (2010)

    Google Scholar 

  45. Bharti, S.K., Sinha, A., Samantaray, A.K., Bhattacharyya, R.: The Sommerfeld effect of second kind: passage through parametric instability in a rotor with non-circular shaft and anisotropic flexible supports. Nonlinear Dyn. 100, 3171–3197 (2020)

    Article  Google Scholar 

  46. Samantaray, A.K., Bhattacharyya, R., Mukherjee, A.: An investigation into the physics behind the stabilizing effects of two-phase lubricants in journal bearings. J. Vib. and Control 12(4), 425–442 (2006)

    Article  MATH  Google Scholar 

  47. Samantaray, A.K., Mukherjee, A., Bhattacharyya, R.: Some studies on rotors with polynomial type nonlinear external and internal damping. Int. J. Non-linear Mech. 41, 1007–1015 (2006)

    Article  MATH  Google Scholar 

  48. Samantaray, A.K., Dasgupta, S.S., Bhattacharyya, R.: Bond graph modeling of an internally damped nonideal flexible spinning shaft. J. Dyn. Syst. Measur. Control 132(6), 061502 (2010)

    Google Scholar 

  49. Samantaray, A.K., A note on internal damping induced self-excited vibration in a rotor by considering source loading of a DC motor drive, Int. J. Non-Linear Mech. 43(9), 1012–1017 (2008)

    Google Scholar 

  50. Samantaray, A.K.: Steady state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dyn. 56(4), 443–451 (2009)

    Article  MATH  Google Scholar 

  51. Mukherjee, A., Karmakar, R., Samantaray, A.K.: Modelling of basic induction motors and source loading in rotor-motor systems with regenerative force field. Simul. Pract. Theory 7(5), 563–576 (1999)

    Article  Google Scholar 

  52. Kirk, R.G., Gunter, E.J.: The effect of support flexibility and damping on the synchronous response of a single-mass flexible rotor. J. Eng. Indus. Trans. ASME 94, 221–232 (1972)

    Google Scholar 

  53. Gunter, E. J.: The influence of internal friction on the stability of high speed rotors. J. Eng. Indus. Trans. ASME Ser. B 89(4), 683–688 (1967)

    Google Scholar 

  54. Vance, J.M., Rotordynamics of Turbomachinery. New York, Wiley (1988)

    Google Scholar 

  55. Genta, G.: Dynamics of Rotating Systems. Springer (2005)

    Google Scholar 

  56. Greenhill, Lyn, M., Guillermo, A.: Cornejo.: critical speeds resulting from unbalance excitation of backward whirl modes. Design Eng. Techn. Conf. 3, part 3, ASME (1995)

    Google Scholar 

  57. Muszynska, A.: Forward and backward precession of a vertical anisotropically supported rotor. J. Sound Vib. 192(1), 207–222 (1996)

    Article  Google Scholar 

  58. Bharti, S.K., Bisoi, A., Sinha, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect at forward and backward critical speeds in a rigid rotor shaft system with anisotropic supports. J. Sound Vib. 442, 330–349 (2019)

    Article  Google Scholar 

  59. Karthikeyan, M., Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect characterization in rotors with non-ideal drive from ideal drive response and power balance. Mech. Mach. 91, 269–288 (2015)

    Article  Google Scholar 

  60. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect in a two-disk rotor dynamic system at various unbalance conditions. Meccanica 53(4), 681–701 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Porter, B.: A theoretical analysis of the torsional oscillation of a system incorporating a Hooke’s joint. J. Mech. Eng. Sci. 3(4), 324–329 (1961)

    Article  Google Scholar 

  62. Porter, B., Gregory, R.W.: Non-linear torsional oscillation of a system incorporating a Hooke’s joint. J. Mecha. Eng. Sci. 5(2), 191–200 (1963)

    Article  Google Scholar 

  63. Porter, B.: Non-linear torsional oscillation of a two-degree-of-freedom system incorporating a Hooke joint. Proc. R. Soc. Lond. Ser. A 277(1368), 92–106 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  64. Asokanthan, S.F., Hwang, M.C.: Torsional instabilities in a system incorporating a Hooke’s joint. J. Vib. Acoust. 118(3), 368–374 (1996)

    Article  Google Scholar 

  65. Asokanthan, S.F., Meehan, P.A.: Non-linear vibration of a torsional system driven by a Hooke’s joint. J. Sound Vib. 233(2), 297–310 (2000)

    Article  Google Scholar 

  66. Bulut, G.: Dynamic stability analysis of torsional vibrations of a shaft system connected by a Hooke’s joint through a continuous system model. J. Sound Vib. 333(16), 3691–3701 (2014)

    Article  Google Scholar 

  67. De Smidt, H.A., Wang, K.W., Smith, E.C.: Multi-harmonic adaptive vibration control of AMB-driveline systems with non-constant velocity flexible couplings. Int. Design Eng. Techn. Conf. Comput. Inform. Eng. Conf. 37033, 1995–2005 (2003)

    Google Scholar 

  68. Yao, W., DeSmidt, H.. Nonlinear coupled torsion/lateral vibration and Sommerfeld behavior in a double U-joint driveshaft. J. Vib. Acoust. 143(3), 031011 (2021)

    Google Scholar 

  69. Lima, R., Soize, C., Sampaio, R.: Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 263–273 (2015)

    Article  Google Scholar 

  70. Lima, R., Sampaio, R.: Two parametric excited nonlinear systems due to electromechanical coupling. J. Braz. Soc. Mech. Sci. Eng. 38(3), 931–943 (2016)

    Article  Google Scholar 

  71. Tsuchida, M., Guilherme, K.L., Balthazar, J.M., Silva G.N., Cheshancov, B.I.. On regular and irregular vibrations of a non-ideal system with two degree of freedom. 1:1 resonance. J. Sound Vib. 260, 949–960 (2003)

    Google Scholar 

  72. Tsuchida, M., Guilherme, K.L., Balthazar, J.M.: On chaotic vibrations of a non-ideal system with two degrees of freedom: 1:2 resonance and Sommerfeld effect. J. Sound Vib. 282, 1201–1207 (2005)

    Article  Google Scholar 

  73. Quinn, D.D.: Resonant dynamics in a rotordynamic system with nonlinear inertial coupling and shaft anisotropy. Nonlinear Dynam. 57(4), 623–633 (2009)

    Article  MATH  Google Scholar 

  74. Song, Z., Chen, Z., Li, W., Chai, Y.: Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method. Meccanica 52(4–5), 1159–1173 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  75. Bones, J.A., Hannam, R.G.: Whirling of shafts with asymmetric stiffness. J. Mech. Eng. Sci. 8(4), 437–447 (1966)

    Article  Google Scholar 

  76. Genta, G.: On a persistent misunderstanding of the role of hysteretic damping in rotordynamics. J. Vib. Acoust. Trans. ASME 126(3), 459–461 (2004)

    Article  Google Scholar 

  77. Wettergren, H.L., Olsson, K.O.: Dynamic instability of a rotating asymmetric shaft with internal viscous damping supported in anisotropic bearings. J. Sound Vib. 195(1), 75–84 (1996)

    Article  Google Scholar 

  78. Sinha, A., Bharti, S.K., Bhattacharyya, R., Samantaray, A.K.: Discussion on A novel approach to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system, Jain et al. J. Sound Vib. 413(2018) 159–172, J. Sound Vib. 442(3), 268–280 (2019)

    Google Scholar 

  79. Samantaray, A.K.: Efficiency considerations for Sommerfeld effect attenuation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406221991584 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Samantaray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samantaray, A.K. (2022). Three Kinds of Sommerfeld Effect in Rotor Dynamics. In: Balthazar, J.M. (eds) Nonlinear Vibrations Excited by Limited Power Sources. Mechanisms and Machine Science, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-96603-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96603-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96602-7

  • Online ISBN: 978-3-030-96603-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics