Skip to main content
Log in

The onset of convection in a nanofluid saturated porous layer using Darcy model with cross diffusion

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Linear and nonlinear stability analysis for the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. In conjunction with the Brownian motion, the nanoparticle fraction becomes stratified, hence the viscosity and the conductivity are stratified. The nanofluid is assumed to be diluted and this enables the porous medium to be treated as a weakly heterogeneous medium with variation, in the vertical direction, of conductivity and viscosity. The critical Rayleigh number, wave number for stationary and oscillatory mode and frequency of oscillations are obtained analytically using linear theory and the non-linear analysis is made with minimal representation of the truncated Fourier series analysis involving only two terms. The effect of various parameters on the stationary and oscillatory convection is shown pictorially. We also study the effect of time on transient Nusselt number and Sherwood number which is found to be oscillatory when time is small. However, when time becomes very large both the transient Nusselt value and Sherwood value approaches to their steady state values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

D B :

Brownian diffusion coefficient (m2/s)

D T :

Thermophoretic diffusion coefficient (m2/s)

H :

Dimensional layer depth (m)

k :

Thermal conductivity of the nanofluid (W/m K)

k m :

Overall thermal conductivity of the porous medium saturated by the nanofluid (W/m K)

K :

Permeability (m2)

Ln :

Lewis number

N A :

Modified diffusivity ratio

N B :

Modified particle-density increment

p :

Pressure (Pa)

p :

Dimensionless pressure, (p K)/(μα f )

Va :

Vadász number

γ a :

Non-dimensional acceleration

Ra T :

Thermal Rayleigh-Darcy number

Rm :

Basic-density Rayleigh number

Rn :

Concentration Rayleigh number

t :

Time (s)

t :

Dimensionless time, (t α f )/H 2

T :

Nanofluid temperature (K)

T :

Dimensionless temperature, \(\frac{T^{*} - T_{c}^{*}}{T_{h}^{*} -T_{c}^{*}}\)

\(T_{c}^{*}\) :

Temperature at the upper wall (K)

\(T_{h}^{*}\) :

Temperature at the lower wall (K)

(u,v,w):

Dimensionless Darcy velocity components (u ,v ,w )H/α m (m/s)

v :

Nanofluid velocity (m/s)

(x,y,z):

Dimensionless Cartesian coordinate (x ,y ,z )/H; z is the vertically upward coordinate

(x ,y ,z ):

Cartesian coordinates

α f :

Thermal diffusivity of the fluid (m/s2)

β :

Thermal volumetric coefficient (K−1)

ν :

Viscosity variation parameter

ε :

Porosity

η :

Conductivity variation parameter

μ :

Viscosity of the fluid

ρ :

Fluid density

ρ p :

Nanoparticle mass density

σ :

Thermal capacity ratio

ϕ :

Nanoparticle volume fraction

ϕ :

Relative nanoparticle volume fraction, \(\frac{\phi^{*} - \phi_{0}^{*}}{\phi_{1}^{*} - \phi_{0}^{*}}\)

:

Dimensional variable

′:

Perturbed variable

St :

Stationary

Osc :

Oscillatory

b :

Basic solution

f :

Fluid

p :

Particle

References

  1. Maxwell JC (1873) Electricity and magnetism. Clarendon, Oxford

    Google Scholar 

  2. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and applications of non-Newtonian flow, vol 66, pp 99–105. ASME FED 231/MD

    Google Scholar 

  3. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  Google Scholar 

  4. Zhou XF, Gao L (2006) Effective thermal conductivity in nanofluids of non-spherical particles with interfacial thermal resistance: differential effective medium theory. J Appl Phys 100(2):024913

    Article  ADS  Google Scholar 

  5. Gao L, Zhou XF (2006) Differential effective medium theory for thermal conductivity in nanofluids. Phys Lett A 348(3–6):355–360

    Article  ADS  Google Scholar 

  6. Gao L, Zhou X, Ding Y (2007) Effective thermal and electrical conductivity of carbon nanotube composites. Chem Phys Lett 434(4–6):297–300. doi:10.1016/j.cplett.2006.12.036

    ADS  Google Scholar 

  7. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  MATH  Google Scholar 

  8. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48(13):2652–2661

    Article  MATH  Google Scholar 

  9. Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109(1):50–55

    Article  Google Scholar 

  10. Vadász P (2006) Heat conduction in nanofluid suspensions. J Heat Transf 128(5):465–477

    Article  Google Scholar 

  11. Yu W, Xie H, Chen L, Li Y (2010) Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A, Physicochem Eng Asp 355(1–3):109–113

    Article  Google Scholar 

  12. Eastman JA, Choi SUS, Yu W, Thompson LJ (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  ADS  Google Scholar 

  13. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  14. Kim J, Choi CK, Kang YT, Kim MG (2006) Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys Eng 10:29–39

    Article  Google Scholar 

  15. Nield DA, Kuznetsov AV (2010) The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J Heat Transf 132:052405

    Article  Google Scholar 

  16. Coussy O (2004) Poromechanics. Wiley, New York, p 315

    Google Scholar 

  17. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  ADS  Google Scholar 

  18. Sciarra G, dell’Isola F, Coussy O (2007) Second gradient poromechanics. Int J Solids Struct 44:6607–6629

    Article  MATH  MathSciNet  Google Scholar 

  19. Sciarra G, dell’Isola F, Ianiro N, Madeo A (2008) A variational deduction of second gradient poroelasticity part I: general theory. J Mech Mater Struct 3:507–526

    Article  Google Scholar 

  20. Madeo A, dell’Isola F, Ianiro N, Sciarra G (2008) A variational deduction of second gradient poroelasticity II: an application to the consolidation problem. J Mech Mater Struct 3:607–625

    Article  Google Scholar 

  21. Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018

    Article  MATH  Google Scholar 

  22. Nield DA (2008) General heterogeneity effects on the onset of convection in a porous medium. In: Vadász P (ed) Emerging topics in heat and mass transfer in porous media. Springer, New York, pp 63–84

    Chapter  Google Scholar 

  23. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581

    Article  ADS  Google Scholar 

  24. Maxwell JC (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, Cambridge

    Google Scholar 

  25. Sheu LJ (2011) Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid. Transp Porous Media 88:461–477

    Article  MathSciNet  Google Scholar 

  26. Malashetty MS, Swamy MS, Sidram W (2011) Double diffusive convection in a rotating anisotropic porous layer saturated with viscoelastic fluid. Int J Therm Sci 50(9):1757–1769

    Article  Google Scholar 

  27. Bhadauria BS, Agarwal S (2011) Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp Porous Media 87(2):585–602

    Article  MathSciNet  Google Scholar 

  28. Agarwal S, Bhadauria BS, Sacheti NC, Chandran P, Singh AK (2012) Non-linear convective transport in a binary nanofluid saturated porous layer. Transp Porous Media 93:29–49

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Umavathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umavathi, J.C., Mohite, M.B. The onset of convection in a nanofluid saturated porous layer using Darcy model with cross diffusion. Meccanica 49, 1159–1175 (2014). https://doi.org/10.1007/s11012-013-9860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9860-2

Keywords

Navigation