Skip to main content

A Study of Non-Newtonian Nanofluid Saturated in a Porous Medium Based on Modified Darcy-Maxwell Model

  • Conference paper
  • First Online:
Cognitive Informatics and Soft Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 375))

Abstract

An investigation is made to deal with linear and non-linear thermal instability on the onset of convection in a horizontal layer of Darcy-Maxwell nanofluid. A macroscopic filtration law known as modified Darcy-Maxwell model relevant to non-Newtonian behavior of real fluids in porous medium has been considered. The effects of Brownian motion and thermophoresis have been incorporated. The boundaries are assumed to be horizontal planes which are impermeable and perfectly thermally conducting. The linear stability analysis is used to investigate as to how the concentration of nanoparticles, modified Lewis number, diffusion coefficients and porosity influence the Rayleigh number for the onset of stationary and oscillatory convections. Using the non-linear stability analysis, the variations of Nusselt number and concentration Nusselt number have been analyzed for different physical parameters such as concentration Rayleigh number, relaxation parameter, porosity, heat capacity ratio, Lewis number, and modified diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi SUS, Cho YI (1992) Kasza KE Degradation effects of dilute polymer solutions on turbulent friction and heat transfer behavior. J Non-Newtonian Fluid Mech 41(3):289–307

    Article  Google Scholar 

  2. Choi SUS, Eastman JA (1995) Enhancing thermal conductivities of fluids with nanoparticles. ASME Int Mech Eng Congr Expo 12–17

    Google Scholar 

  3. Besinis A, Peralta TD, Tredwin CJ, Handy RD (2015) Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 9(3):2255–2289

    Article  Google Scholar 

  4. Bigdeli MB, Fasano M, Cardellini A, Chiavazzo E, Asinari P (2016) A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications. Renew Sust Energy Rev 60:1615–1633

    Article  Google Scholar 

  5. Navas J, Sánchez-Coronilla A, Martín EI, Teruel M, Gallardo JJ, Aguilar T, Gómez-Villarejo R, Alcántara R, Fernández-Lorenzo C, Piñero JC, Martín-Calleja J (2016) On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: an experimental and molecular dynamics study. Nano Energy 27:213–224

    Article  Google Scholar 

  6. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immun Letters 190:64–83

    Article  Google Scholar 

  7. Muhamad N, Plengsuriyakarn T, Na-Bangchang K (2018) Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 13:3921–3935

    Article  Google Scholar 

  8. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  Google Scholar 

  9. Mishra PK, Ekielski A (2019) The self-assembly of lignin and its application in nanoparticle synthesis: a short review. Nanomaterials 9:1–15

    Article  Google Scholar 

  10. Mohammadpour J, Lee A (2020) Investigation of nanoparticle effects on jet impingement heat transfer: a review. J Mol Liq 316:113819

    Article  Google Scholar 

  11. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transfer 128(3):240–250

    Article  Google Scholar 

  12. Bianco V, Manca O, Nardini S, Vafai K (2015) Heat transfer enhancement with nanofluids. CRC Press, Boca Raton

    Google Scholar 

  13. Aybar HŞ, Sharifpur M, Azizian MR, Mehrabi M, Meyer JP (2015) A review of thermal conductivity models for nanofluids. Heat Transfer Eng fol 36(13):1085–1110

    Article  Google Scholar 

  14. Babita SSK, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci 79:202–212

    Article  Google Scholar 

  15. Nield DA, Bejan A (2017) Convection in porous media, 5th edn. Springer, New York, pp 1–988

    Book  MATH  Google Scholar 

  16. Nield DA, Kuznetsov AV (2009) Thermal instability in a porous medium layer saturated by a nanofluid. Int J Heat Mass Transfer 52:5796–5801

    Article  MATH  Google Scholar 

  17. Kuznetsov AV, Nield DA (2010) Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp Porous Media 83:425–436

    Article  Google Scholar 

  18. Kuznetsov AV, Nield DA (2010) Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp Porous Media 81:409–422

    Article  MathSciNet  Google Scholar 

  19. Kuznetsov AV, Nield DA (2010) The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Transp Porous Media 85:941–951

    Article  MathSciNet  Google Scholar 

  20. Bhadauria BS, Agarwal S (2011) Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp Porous Media 87:585–602

    Article  MathSciNet  Google Scholar 

  21. Bhadauria BS, Agarwal S, Kumar A (2011) Nonlinear two-dimensional convection in a nanofluid saturated porous medium. Transp Porous Media 90:605–625

    Article  MathSciNet  Google Scholar 

  22. Yadav D, Bhargava R, Agrawal GS (2012) Boundary and internal heat source effects on the onset of Darcy-Brinkman convection in a porous layer saturated by nanofluid. Int J Therm Sci 60:244–254

    Article  Google Scholar 

  23. Yadav D, Agrawal GS, Bhargava R (2012) The onset of convection in a binary nanofluid saturated porous layer. Int J Theo Appl Multi Mech 2:198–224

    Article  Google Scholar 

  24. Chand R, Rana GC (2012) Oscillating convection of nanofluid in porous medium. Transp Porous Media 95(2):269–284

    Article  MathSciNet  Google Scholar 

  25. Chand R, Rana GC (2012) On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium. Int J Heat Mass Transfer 55:5417–5424

    Article  Google Scholar 

  26. Agarwal S, Sacheti NC, Chandran P, Bhadauria BS, Singh AK (2012) Non-linear convective transport in a binary nanofluid saturated porous layer. Transp Porous Media 93:29–49

    Article  MathSciNet  Google Scholar 

  27. Yadav D, Agrawal GS, Bhargava R (2013) Onset of double-diffusive nanofluid convection in a layer of a saturated porous medium with thermal conductivity and viscosity variation. J Porous Media 16:105–121

    Article  Google Scholar 

  28. Nield DA, Kuznetsov AV (2014) Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int J Heat Mass Transfer 68:211–214

    Article  Google Scholar 

  29. Agarwal S (2014) Natural convection in a nanofluid-saturated rotating porous layer: a more realistic approach. Transp Porous Media 104:581–592

    Article  MathSciNet  Google Scholar 

  30. Nield DA (2011) A note on the onset of convection in a layer of a porous medium saturated by a non-Newtonian nanofluid of power-law type. Transp Porous Media 87(1):121–123

    Article  MathSciNet  Google Scholar 

  31. Skartsis L, Khomami B, Kardos JL (1992) Polymeric flow through fibrous media. J Rheol 36:589–620

    Article  Google Scholar 

  32. Ahmed A, Khan M, Hafeez A (2020) Thermal analysis in unsteady radiative Maxwell nanofluid flow subject to heat source/sink. Appl Nanosci 10:5489–5497

    Article  Google Scholar 

  33. Hayat T, Rashid M, Alsaedi A, Asghar S (2019) Nonlinear convective flow of Maxwell nanofluid past a stretching cylinder with thermal radiation and chemical reaction. J Br Soc Mech Sci Eng 41:86

    Article  Google Scholar 

  34. Chu YM, Ali R, Asjad MI, Ahmadian A, Senu N (2020) Heat transfer flow of Maxwell hybrid nanofluids due to pressure gradient into rectangular region. Sci Rep 10:16643

    Article  Google Scholar 

  35. Madhu M, Kishan N, Chamkha AJ (2017) Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects. Propuls Power Res 6(1):31–40

    Article  Google Scholar 

  36. Sithole HM, Mondal S, Sibanda P, Motsa SS (2017) An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method. Open Phys 15:637–646

    Article  Google Scholar 

  37. Khuzhayorov B, Auriault JL, Royer P (2000) Derivation macroscopic filtration law for transient linear fluid flow in porous media. Int J Eng Sci 38:487–504

    Article  MathSciNet  MATH  Google Scholar 

  38. Bensoussan A, Lions JL, Papanicolaou G. (1978) Asymptotic analysis for periodic structures. North-Holland, Amsterdam. ISBN 978-0-8218-5324-5

    Google Scholar 

  39. Sanchez-Palencia E (1980) Non-homogenous media and vibration theory. Lecture notes in physics, vol 127. Springer, Berlin, pp 461–477

    Google Scholar 

  40. Alishayev MG (1974) Proceedings of Moscow pedagogy institute. Hydromechanics 3:166–174

    Google Scholar 

  41. Maxwell JC (1873) On double refraction in a viscous fluid in motion. Proc R Soc Lond 22:46–47

    Google Scholar 

  42. Horton W, Rogers FT (1945) Convection currents in a porous medium. J Appl Phys 16(6):367–370

    Article  MathSciNet  MATH  Google Scholar 

  43. Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Camb Phil Soc 44(4):508–521

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, R., Tyagi, V.K., Bishnoi, J. (2022). A Study of Non-Newtonian Nanofluid Saturated in a Porous Medium Based on Modified Darcy-Maxwell Model. In: Mallick, P.K., Bhoi, A.K., Barsocchi, P., de Albuquerque, V.H.C. (eds) Cognitive Informatics and Soft Computing. Lecture Notes in Networks and Systems, vol 375. Springer, Singapore. https://doi.org/10.1007/978-981-16-8763-1_21

Download citation

Publish with us

Policies and ethics