Skip to main content
Log in

On the hyperbolicity of a model with 30 moments for ultrarelativistic gases

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An exact macroscopic extended model for ultrarelativistic gases, with an arbitrary number of moments, is present in literature. Here we exploit equations determining wave speeds for the model with 30 independent fields. We find interesting results; for example, the whole system for their determination can be split in some independent subsystems, some wave speeds are expressed by square roots of rational numbers, but not all of them. Moreover these wave speeds for the macroscopic model are the same of those in the kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eckart C (1940) The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluids. Phys Rev 58:919

    Article  ADS  Google Scholar 

  2. Müller I, Ruggeri T (1998) Rational extended thermodynamics, 2nd edn. Springer, New York, Berlin Heidelberg

    Book  MATH  Google Scholar 

  3. Cattaneo C (1948–1949) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83

    MathSciNet  Google Scholar 

  4. Müller I (1966) Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien. Dissertation. Aachen

  5. Israel W (1976) Non stationary irreversible thermodynamics: a causal relativistic theory. Ann Phys (NY) 100:341

    Article  MathSciNet  Google Scholar 

  6. Liu IS, Müller I, Ruggeri T (1986) Relativistic thermodynamics of gases. Ann Phys (NY) 169:191

    Article  ADS  Google Scholar 

  7. Boillat G, Ruggeri T (1999) Maximum wave velocity in the moments system of a relativistic gas. Contin Mech Thermodyn 11:107

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Boillat G, Ruggeri T (1997) Moment equations in the kinetic theory of gases and wave velocities. Contin Mech Thermodyn 9:205

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Boillat G, Ruggeri T (1999) Relativistic gas: moment equations and maximum wave velocity. J Math Phys 40:6399

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Müller I (1999) Speeds of propagation in classical and relativistic extended thermodynamics. Living reviews in relativity. Max-Planck-Institute for Gravitational Physics, Albert Einstein Institute, Potsdam

    Google Scholar 

  11. Borghero F, Demontis F, Pennisi S (2004) An exact macroscopic extended model with many moments for ultrarelativistic gases. In: Proceedings of WASCOM 2003, 12th conference on waves and stability in continuous media. Word Scientific, Singapore, pp 94–101

    Chapter  Google Scholar 

  12. Borghero F, Pennisi S (2004) The nonlinear macroscopic model of relativistic extended thermodynamics of an ultrarelativistic gas. Rend Mat Acc Lincei 9:59–68

    MathSciNet  Google Scholar 

  13. Banach Z, Larecki W (2002) Evolution of central moments for a general relativistic Boltzmann equation: the closure by entropy maximization. Rev Math Phys 14:469–510

    Article  MathSciNet  MATH  Google Scholar 

  14. Montanaro A (2011) On piezothermoelastic plates subject to prescribed boundary temperature. Meccanica 46(2):371–381

    Article  MathSciNet  Google Scholar 

  15. Singh LP, Husain A, Singh M (2011) A self-similar solution of exponential shock waves in non-ideal magnetogasdynamics. Meccanica 46(2):437–445

    Article  MathSciNet  Google Scholar 

  16. Lembo M (2011) Geometry of constraint manifolds and wave propagation in internally constrained elastic bodies. Meccanica 46(4):651–669

    Article  MathSciNet  Google Scholar 

  17. Ezzat MA, El-Karamany AS (2011) Two-temperature theory in generalized magneto-thermoelasticity with two relaxation times. Meccanica 46(4):785–794

    Article  MathSciNet  Google Scholar 

  18. Ishak A, Yacob NA, Bachock N (2011) Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica 46(4):795–801

    Article  MathSciNet  Google Scholar 

  19. Demontis F, Pennisi S (2007) On a further condition in the macroscopic extended model for ultrarelativistic gases. Ann Univ Ferrara, Sez VII, Sci Mat 53:51–64

    Article  MathSciNet  MATH  Google Scholar 

  20. Müller I (2008) Extended thermodynamics—a theory of symmetric hyperbolic field equations. Appl Math 53(5):469–484

    Article  MathSciNet  MATH  Google Scholar 

  21. Müller I (2008) Entropy and energy—an universal competition. Entropy 10(4):462–476

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Friedrichs KO (1954) Symmetric hyperbolic linear differential equations. Commun Pure Appl Math 8:345

    Article  MathSciNet  Google Scholar 

  23. Friedrichs KO, Lax PD (1971) Systems of conservation equations with a convex extension. Proc Nat Acad Sci USA 68:1686

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Friedrichs KO (1974) On the laws of relativistic electromagnetic fluid dynamics. Commun Pure Appl Math 27:749

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Strumia A (1988) Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. II. Symmetric hyperbolic systems with constrained fields. Nuovo Cimento B 101:19

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Gruppo Nazionale per la Fisica Matematica (GNFM-INDAM) Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Demontis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borghero, F., Demontis, F. & Pennisi, S. On the hyperbolicity of a model with 30 moments for ultrarelativistic gases. Meccanica 48, 585–600 (2013). https://doi.org/10.1007/s11012-012-9617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9617-3

Keywords

Navigation