Skip to main content
Log in

Hyperbolicity of a model for polyatomic gases in relativistic extended thermodynamics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The hyperbolicity of a model for relativistic extended thermodynamics of polyatomic gases is here proved for every time direction \(\xi _\alpha \); moreover, an expression for the production terms of the field equation is proposed which encloses as particular cases the variant of the Anderson–Witting model already known in the literature, but also a new variant of the Marle model. With these expressions, it is shown that the field equations satisfy automatically the requirement of a non-negative entropy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-2210-1

    Book  MATH  Google Scholar 

  2. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Continuum Mech. Thermodyn. 24, 271–292 (2011). https://doi.org/10.1007/s00161-011-0213-x

    Article  ADS  MATH  Google Scholar 

  3. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13341-6

    Book  MATH  Google Scholar 

  4. Pennisi, S., Ruggeri, T.: Relativistic Extended thermodynamics of rarefied polyatomic gas. Ann. Phys. 377, 414–445 (2017). https://doi.org/10.1016/j.aop.2016.12.012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Carrisi, M.C., Pennisi, S., Ruggeri, T.: Monatomic limit of relativistic extended thermodynamics of polyatomic gas. Continuum Mech. Thermodyn. 31, 401–412 (2018). https://doi.org/10.1007/s00161-018-0694-y

    Article  ADS  MathSciNet  Google Scholar 

  6. Kogan, M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969)

    Book  Google Scholar 

  7. Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A: Math. Gen. 20, 6505–6517 (1987)

    Article  ADS  Google Scholar 

  8. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9, 205–212 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. Pennisi, S., Ruggeri, T.: A new BGK model for relativistic kinetic theory of monatomic and polyatomic gases. J. Phys.: Conf. Ser. 1035, 012005-1–012005-11 (2018). https://doi.org/10.1088/1742-6596/1035/1/012005

    Article  Google Scholar 

  10. Carrisi, M.C., Pennisi, S., Ruggeri, T.: The production term in relativistic extended thermodynamics for polyatomic gas. Ann. Phys. 405, 298–307 (2019). https://doi.org/10.1016/j.aop.2019.03.025

    Article  ADS  MATH  Google Scholar 

  11. Anderson, J.L., Witting, H.R.: A relativistic relaxational time model for the Boltzmann equation. Physica 74, 466–488 (1974)

    Article  ADS  Google Scholar 

  12. Marle, C.: Modèle cinétique pour l’ètablissement des lois de la conduction de la chaleur et de la viscositè en thèorie de la relativitè. Comptes Rendus de l’Academie des Sciences, Serie I (Mathematique) 260, 6539-–6541 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Ruggeri, T.: Convexity and symmetrization in relativistic theories. Continuum Mech. Thermodyn. 2, 163–177 (1990). https://doi.org/10.1007/BF01129595

    Article  ADS  MathSciNet  Google Scholar 

  14. Cercignani, C., Kremer, G.M.: Moment closure of the relativistic Anderson and Witting model equation. Phys. A 290, 192–202 (2001)

    Article  MathSciNet  Google Scholar 

  15. Liu, I.-S., Müller, I., Ruggeri, T.: Relativistic thermodynamics of Gases. Ann. Phys. 169, 191–219 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  16. Brini, F.: Hyperbolicity region in extended thermodynamics with 14 moments. Continuum Mech. Thermodyn. 13, 1–8 (2001)

    Article  ADS  Google Scholar 

  17. Ruggeri, T., Trovato, M.: Hyperbolicity in extended thermodynamics of fermi and bose gases. Continuum Mech. Thermodyn. 16, 551–576 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Brini, F., Ruggeri, T.: Second-order approximation of extended thermodynamics of a monatomic gas and hyperbolicity region. Continuum Mech. Thermodyn. https://doi.org/10.1007/s00161-019-00778-y

  19. Brini, F., Ruggeri, T.: On the hyperbolicity property of extended thermodynamics models for rarefied gases. In: Wascom 2019 conference, June 10--14, 2019 - Maiori (Sa), Italy, to be published in the proceedings of the conference

Download references

Acknowledgements

This paper was supported by GNFM of INDAM; one of the authors (S. Pennisi) thanks also for the support of the project GESTA - Fondazione Banco di Sardegna. We thank too two anonymous referees for their comments which contributed to improve the quality of this article. We also thank Prof. T. Ruggeri because the proof here presented in the 6 lines after Eq. (11) has been provided by him in past works, even if this demonstration has not found a place in such published articles. He also suggested that we read and study previous works that have broadened our horizons and whose comments have been included here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pennisi.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Some useful integrals

In the principal text of this article, we need some integrals. They are the following ones:

$$\begin{aligned} \begin{aligned}&V = m \, c \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, f \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} , \\&T^\theta = \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, f \, \left( 1 \, + \, \frac{\mathcal {I}}{m \, c^2} \right) \, p^\theta \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} , \\&A_E^{\beta \theta }= \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, f_E \, \left( 1 \, + \, \frac{\mathcal {I}}{m \, c^2} \right) ^2 \, p^\beta p^\theta \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} , \\&A_{22}^{\mu \nu \beta \gamma }= \frac{c}{m^3} \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, f_E \, \left( 1 \, + \, \frac{2 \, \mathcal {I}}{m \, c^2} \right) ^2 \, p^\mu p^\nu p^\beta p^\gamma \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} . \end{aligned} \end{aligned}$$

We can integrate these expressions by using the representation theorems and with the same methodology used in [4]. So we obtain, for example:

$$\begin{aligned} V_E = 4 \, \pi \, m^3 \, c^3 \, e^{- 1 - \, \frac{m}{k_B} \, \lambda _E } \int _{0}^{+ \infty } \, J_{2,0} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} , \end{aligned}$$

where \(\gamma ^*= \gamma \, \left( 1 \, + \, \frac{\mathcal {I}}{m \, c^2} \right) \). But from eq. (26) of [4], we have

$$\begin{aligned} n = 4 \, \pi \, m^3 \, c^3 \, e^{- 1 - \, \frac{m}{k_B} \, \lambda _E } \int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} , \end{aligned}$$

so that the above expression becomes

$$\begin{aligned} V_E = n \, \frac{\int _{0}^{+ \infty } \, J_{2,0} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } . \end{aligned}$$
(31)

By proceeding in the same way for the other quantities, we obtain

$$\begin{aligned} \begin{aligned}&V^{(1)} = - \, \frac{m}{k_B} \, V_E \, (\lambda - \lambda _E) \, - \, \frac{m \, c}{k_B} \, T^\theta _E \, (\lambda _\theta - \lambda _{E \theta }) \, + \, R^{\beta \gamma } \, \Sigma _{\beta \gamma } , \\&T^\theta _E = T_0 \, U^\theta , \, R_{\beta \gamma } = - \, \frac{c}{k_B} \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, f_E \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) \, p^\beta p^\gamma \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} , \\&T_0 = \frac{n}{c} \, \frac{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \left( 1 \, + \, \frac{ \mathcal {I}}{m \, c^2} \right) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \, R^{\beta \gamma } = R_0 \frac{U^\beta U^\gamma }{c^2} + R_1 \, h^{\beta \gamma } , \\&R_0= - \, \frac{m \, n \, c^2}{k_B} \, \frac{\int _{0}^{+ \infty } \, J_{2,2} (\gamma ^*) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \\&R_1= - \, \frac{m \, n \, c^2}{3 \, k_B} \, \frac{\int _{0}^{+ \infty } \, J_{4,0} (\gamma ^*) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \\&T^{(1)\theta } = - \, \frac{m}{k_B} \, T_E^\theta \, (\lambda - \lambda _E) \, - \, \frac{1}{k_B} \, A_E^{\theta \beta } \, (\lambda _\beta - \lambda _{E \beta }) \, + \, T^{\theta \beta \gamma } \, \Sigma _{\beta \gamma } , \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned}&T^{\beta \gamma \theta } = \frac{- 1}{m \, k_B} \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, f_E \, \left( 1 \, + \, \frac{\mathcal {I}}{m \, c^2} \right) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) \, p^\beta p^\gamma p^\theta \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} , \\&A_E^{\beta \gamma } = T_3 \frac{U^\beta U^\gamma }{c^2} + T_4 \, h^{\beta \gamma }, \quad T^{\beta \gamma \theta } = T_1 \, U^\beta U^\gamma U^\theta + 3 \, T_2 \, h^{(\beta \gamma } U^{\theta )} , \\&T_3 = m \, n \, c \, \frac{\int _{0}^{+ \infty } \, J_{2,2} (\gamma ^*) \, \left( 1 \, + \, \frac{ \mathcal {I}}{m \, c^2} \right) ^2 \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \\&T_4 = \frac{1}{3} \, m \, n \, c \, \frac{\int _{0}^{+ \infty } \, J_{4,0} (\gamma ^*) \, \left( 1 \, + \, \frac{ \mathcal {I}}{m \, c^2} \right) ^2 \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \\&T_1 = - \, \frac{m \, n}{k_B c} \, \frac{\int _{0}^{+ \infty } \, J_{2,3} (\gamma ^*) \, \left( 1 \, + \, \frac{ \mathcal {I}}{m \, c^2} \right) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \\&T_2 = - \, \frac{m \, n \, c}{3 \, k_B} \, \frac{\int _{0}^{+ \infty } \, J_{4,1} (\gamma ^*) \, \left( 1 \, + \, \frac{ \mathcal {I}}{m \, c^2} \right) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \end{aligned} \end{aligned}$$
(32)
$$\begin{aligned} \begin{aligned}&A_{22}^{\mu \nu \beta \gamma } = \frac{1}{5} \, C_1 \, h^{( \mu \nu } h^{\beta \gamma )} \, +2 \, C_2 \, h^{( \mu \nu } U^\beta U^{ \gamma )} \, + \, C_3 \, U^\mu U^\nu U^\beta U^{ \gamma } , \\&C_1 = n \, c^4 \, \frac{\int _{0}^{+ \infty } \, J_{6,0} (\gamma ^*) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) ^2 \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \\&C_2 = n \, c^2 \, \frac{\int _{0}^{+ \infty } \, J_{4,2} (\gamma ^*) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) ^2 \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } , \\&C_3 = n \, \frac{\int _{0}^{+ \infty } \, J_{2,4} (\gamma ^*) \, \left( 1 \, + \, \frac{2 \mathcal {I}}{m \, c^2} \right) ^2 \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I}}{\int _{0}^{+ \infty } \, J_{2,1} (\gamma ^*) \, \phi (\mathcal {I}) \, \mathrm{d} \, \mathcal {I} } . \end{aligned} \end{aligned}$$

In the next subsection, we will find some useful consequences of this expressions.

1.1 Some useful properties of the above integrals

Let us define the function

$$\begin{aligned}&h'= - \, k_B \, c \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, e^{- \, 1 \, - \, \frac{\chi }{k_B}} \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} , \end{aligned}$$
(33)

with \(\chi \) given by (3)\(_2\), and the quadratic form in the variables \(\delta \, \lambda _A\):

$$\begin{aligned} K= \frac{\partial ^2 \, h' }{\partial \, \lambda _B \, \partial \, \lambda _A} \, \delta \, \lambda _A \, \delta \, \lambda _B . \end{aligned}$$

Although they have no physical meaning, they will be useful to find properties which will be used below. Now, introducing the multi-index notation \(\lambda _A\) where \(A=0,1,2\) indicates the number of index: \(\lambda _0=\lambda , \lambda _1= \lambda _{\beta } , \lambda _2= \Sigma _{\beta \gamma }\), we have:

$$\begin{aligned} \frac{\partial \, h'}{\partial \, \lambda _A} = c \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, e^{- \, 1 \, - \, \frac{\chi }{k_B}} \, \frac{\partial \, \chi }{\partial \, \lambda _A} \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} . \end{aligned}$$

Since \(\frac{\partial \, \chi }{\partial \, \lambda _A}\) does not depend on \(\lambda _B\), it follows

$$\begin{aligned} \frac{\partial ^2 \, h'}{\partial \, \lambda _B \, \partial \, \lambda _A} = - \, \frac{c}{k_B} \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, e^{- \, 1 \, - \, \frac{\chi }{k_B}} \, \frac{\partial \, \chi }{\partial \, \lambda _B} \, \frac{\partial \, \chi }{\partial \, \lambda _A} \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} . \end{aligned}$$

and we have

$$\begin{aligned} K= - \, \frac{c}{k_B} \, \int _{\mathfrak {R}^3} \int _{0}^{+ \infty } \, e^{- \, 1 \, - \, \frac{\chi }{k_B}} \, (\delta \, \chi \, )^2 \, \phi (\mathcal {I}) \, \mathrm{d} \overrightarrow{P} \, \mathrm{d} \, \mathcal {I} \, < \, 0 . \end{aligned}$$
(34)

We want now to see its consequences near the equilibrium state. For this aim, we rewrite K as

$$\begin{aligned} \begin{aligned}&K= \frac{\partial ^2 \, h'}{\partial \, \lambda ^2} \, \left( \delta \, \lambda \right) ^2 \, + 2 \, \frac{\partial ^2 \, h' }{\partial \, \lambda \, \partial \, \lambda _\mu } \, \delta \, \lambda \, \delta \, \lambda _\mu + 2 \, \frac{\partial ^2 \, h' }{\partial \, \lambda \, \partial \, \Sigma _{\mu \nu }} \, \delta \, \lambda \, \delta \, \Sigma _{\mu \nu } \\&\qquad + \frac{\partial ^2 h' }{\partial \lambda _\beta \, \partial \lambda _\mu } \, \delta \lambda _\beta \, \delta \lambda _\mu + 2 \, \frac{\partial ^2 \, h' }{\partial \, \lambda _\beta \, \partial \, \Sigma _{\mu \nu }} \, \delta \lambda _\beta \, \delta \Sigma _{\mu \nu } + \frac{\partial ^2 \, h'}{\partial \Sigma _{\beta \gamma } \, \partial \Sigma _{\mu \nu }} \, \delta \Sigma _{\beta \gamma } \, \delta \Sigma _{\mu \nu } . \end{aligned} \end{aligned}$$

By calculating the coefficients of the differentials at equilibrium, it becomes

$$\begin{aligned} \begin{aligned}&K_E= - \, \frac{m}{k_B} \, \left[ V_E \, \left( \delta \, \lambda \right) ^2 \, + 2 \, c \, T^{\mu }_E \, \delta \, \lambda \, \delta \, \lambda _\mu - 2 \, \frac{k_B}{m} \, R^{\mu \nu } \, \delta \, \lambda \, \delta \, \Sigma _{\mu \nu } \right. \\&\quad \left. \, + \, \frac{c}{m} \, A_{E}^{\beta \mu } \, \delta \lambda _\beta \, \delta \lambda _\mu - 2 \, \frac{k_B \, c}{m} \, T^{\beta \mu \nu } \, \delta \, \lambda _\beta \, \delta \, \Sigma _{\mu \nu } + \, A_{22}^{\beta \gamma \mu \nu } \, \delta \, \Sigma _{\beta \gamma } \, \delta \, \Sigma _{\mu \nu } \right] , \end{aligned} \end{aligned}$$

By using (31) and (32), our expression becomes

$$\begin{aligned} - \, \frac{k_B}{c} \, K_E= \sum _{a,b=1}^{3} \, P^{ab} X_a \, X_b + \sum _{a,b=1}^{2} \, Q^{ab} X_{a \mu }\, X^{b \mu } + \, \frac{2}{15} \, m \, C_1 \, X_{\mu \nu } X^{\mu \nu } , \end{aligned}$$

where \(X_1= \delta \, \lambda \), \(X_2= U^\mu \delta \, \lambda _\mu \), \(X_3= U^\mu U^\nu \delta \, \Sigma _{\mu \nu }\), \(X_{1 \mu }= h_{\mu }^\nu \delta \, \lambda _\nu \), \(X_{2 \mu }= h_{\mu }^\nu U^\delta \, \delta \, \Sigma _{\nu \delta } \), \(X_{\mu \nu } = \delta \, \Sigma _{< \mu \nu >_3}\), and moreover, the matrices \( P^{ab}\) and \( Q^{ab}\) are

$$\begin{aligned} \begin{aligned}&P = \left( \begin{array}{ccc} \frac{m}{c} \, V_E &{} m \, T_0 &{} - \, \frac{k_B}{c^3} \, (R_0 +R_1) \\ m \, T_0 &{} \frac{T_3}{c^2} &{} - \, k_B \, \left( T_1 + \, \frac{1}{c^2} \, T_2 \right) \\ - \, \frac{k_B}{c^3} \, (R_0 +R_1) &{} \, - \, k_B \, \left( T_1 + \, \frac{1}{c^2} \, T_2 \right) &{} \, \, \frac{m}{c} \, \left( \frac{1}{9} \, \frac{C_1}{c^4} \, + \, \frac{2}{3} \, \frac{C_2}{c^2} \, + C_3 \right) \end{array}\right) , \\&Q = \left( \begin{array}{cc} T_4 &{} - 2 \, k_B \, T_2 \\ &{} \\ - 2 \, k_B \, T_2 &{} \, \frac{4}{3} \, \frac{m}{c} \, C_2 \end{array}\right) . \end{aligned} \end{aligned}$$

Since we have \(K < 0\), we have also that P and Q are definite positive. But \(V_E>0\), \(T_4>0\) are immediate consequences of (31) and following equations; so these properties are equivalent to the following ones

$$\begin{aligned} {\tilde{M}}_1&= \left| \begin{matrix} V_E &{} c \, T_0 \\ &{} \\ c \, T_0 &{} \frac{T_3}{m \, c} \\ \end{matrix}\right| >0 , \end{aligned}$$
(35)
$$\begin{aligned} {\tilde{M}}_3&= \left| \begin{matrix} V_E &{} c \, T_0 &{} \frac{k_B}{m \, c^2} \, (R_0 +R_1) \\ &{}&{} \\ c \, T_0 &{} \frac{T_3}{m \, c} &{} \frac{k_B \, c}{m} \, \left( T_1 + \, \frac{1}{c^2} \, T_2 \right) \\ &{}&{} \\ \frac{k_B}{m \, c^2} \, (R_0 +R_1) &{} \, \frac{k_B \, c}{m} \, \left( T_1 + \, \frac{1}{c^2} \, T_2 \right) &{} \, \, \quad \frac{1}{9} \, \frac{C_1}{c^4} \, + \, \frac{2}{3} \, \frac{C_2}{c^2} \, + C_3 \end{matrix}\right|> 0 ,\\ {\tilde{M}}_2&= \left| \begin{matrix} T_4 &{} 2 \, k_B \, T_2 \\ &{} \\ 2 \, k_B \, T_2 &{} \, \frac{4}{3} \, \frac{m}{c} \, C_2 \end{matrix}\right| >0 . \end{aligned}$$

The first one of these equations has been used above, after (20).

A theorem useful in the above considerations

In the main part of this article, we had to exploit the condition

$$\begin{aligned} \sum _{h=0}^{n} a_h \left( \xi _0 \right) ^{2h} \, \left( \xi _1 \right) ^{2n-2h}> 0 , \, \forall \, \left( \xi _1 \right) ^2 , \end{aligned}$$
(36)

and with \(\xi _0 = \sqrt{1+(\xi _1)^2}\). We prove now the following

Theorem: “The above condition is equivalent to \(a_n>0\) and \(x_i \le 1\) for all real roots of \(f(x)= \sum _{h=0}^{n} a_h \, x^h\)”.

In fact, in the particular case \(\xi _1 =0\), the above condition becomes \(a_n>0\) and there remains to exploit it for \(\xi _1 \ne 0\). For this case, we define

$$\begin{aligned} x = \frac{\left( \xi _0 \right) ^{2}}{\left( \xi _1 \right) ^{2}} = 1 + \, \frac{1}{\left( \xi _1 \right) ^{2}} , \end{aligned}$$

and see that x takes all the values belonging to the interval \( ] \, 1 , \, + \infty [\) because it is a decreasing function of \(\left( \xi _1 \right) ^{2}\) and its limits for \(\left( \xi _1 \right) ^{2}\) going to zero or to \(+ \infty \) are \(+ \infty \) and 1, respectively.

So, for \(\xi _1 \ne 0\), the condition (36) can be written as

$$\begin{aligned} f(x) = \sum _{h=0}^{n} a_h \, x^ h> 0 , \, \forall \, x > 1 . \end{aligned}$$
(37)

We see now that our condition \(x_i \le 1\) is necessary because, if there is a real root \({\bar{x}}\) of f(x) with \({\bar{x}}>1\), then (37) is violated in \(x={\bar{x}}\).

Our condition \(x_i \le 1\) is also sufficient because in this case in \( ] \, 1 , \, + \infty [\) the function f(x) has always the same sign, and moreover,

\(\lim _{x \rightarrow + \infty } f(x)= + \infty >0 \) (thanks to \(a_n>0\)). This fact confirms that \(f(x) >0 \) in \( ] \, 1 , \, + \infty [\).

  • The particular case \(n=1\).

The condition \(a_n>0\) becomes \(a_1>0\); moreover, f(x) has only the root \({\bar{x}}= - \, \frac{a_0}{a_1}\) so that the second condition \(x_i \le 1\) becomes \(a_1 + a_0 \ge 0\). We can conclude that, in the case \(n=1\), the condition (36) becomes

$$\begin{aligned} a_1>0 , \quad a_1 + a_0 \ge 0 . \end{aligned}$$
  • The particular case \(n=2\).

The condition \(a_n>0\) becomes \(a_2>0\); moreover, if \((a_1)^2 - 4 \, a_0 \, a_2 <0\), then f(x) has no real roots and also our second condition is satisfied.

If \((a_1)^2 - 4 \, a_0 \, a_2 \ge 0\), then f(x) has two real roots (or only one double root) \(x_1 \le x_2\). Since \(x_1 \le 1\) and \(x_2 \le 1\), we have \(\frac{x_1 + x_2}{2} \, \le 1\), i.e. \(2 \, a_2 + a_1 \ge 0\). Moreover, we have \(f(1) \ge 0\) (because, if \(f(1) <0\), we have also \(f(x) <0\) in a right neighbourhood of 1) and this condition can be expressed as \(a_2 + a_1 + a_0 \ge 0\). These conditions are also sufficient because \(f(1) \ge 0\) implies that \(1 \, \in \, ] \, - \infty , \, x_1 \, [\) or \(1 \, \in \, ] \, x_2 , \, + \infty \, [\) and the first one of these eventualities cannot occur because \(\frac{x_1 + x_2}{2} \, \le 1\). We can conclude that, in the case \(n=2\), the condition (36) becomes

$$\begin{aligned} \left\{ \begin{matrix} a_2>0 , \, a_0 + a_1 + a_2 \ge 0 , \, a_1 + 2\, a_2 \ge 0 &{} \quad \text{ if } \quad (a_1)^2 - 4 a_0 a_2 \ge 0 , \\ &{} \\ a_2 >0 , &{} \quad \text{ if } \quad (a_1)^2 - 4 a_0 a_2 < 0 . &{} \end{matrix} \right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrisi, M.C., Pennisi, S. Hyperbolicity of a model for polyatomic gases in relativistic extended thermodynamics. Continuum Mech. Thermodyn. 32, 1435–1454 (2020). https://doi.org/10.1007/s00161-019-00857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00857-0

Keywords

Navigation