Skip to main content
Log in

Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The steady laminar boundary layer flow over a moving plate in a moving fluid with convective surface boundary condition and in the presence of thermal radiation is investigated in this paper. Under certain conditions, the present problem reduces to the classical Blasius and Sakiadis problems. The effects of radiation and convective parameters on the thermal field are thoroughly examined and discussed. Dual solutions are found to exist when the plate and the fluid move in the opposite directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Convective parameter

c :

Constant

C f :

Skin friction coefficient

c p :

Specific heat at constant pressure

f :

Dimensionless stream function

k :

Thermal conductivity

k :

Mean absorption coefficient

N :

Radiation parameter

Pr :

Prandtl number

q r :

Radiative heat flux

T :

Fluid temperature

T f :

Hot fluid temperature

T w :

Plate temperature

T :

Ambient temperature

u,v :

Velocity components along the x and y directions, respectively

U :

Composite velocity

U w :

Plate velocity

U :

Free stream velocity

x,y :

Cartesian coordinates along the plate and normal to it, respectively

α :

Thermal diffusivity

ε :

Velocity ratio parameter

η :

Similarity variable

θ :

Dimensionless temperature

ν:

Kinematic viscosity

ρ :

Fluid density

σ :

Stefan-Boltzmann constant

τ w :

Wall shear stress

ψ :

Stream function

w :

At the wall

∞:

In the free stream

′:

Differentiation with respect to η

References

  1. Bataller RC (2008) Radiation effects in the Blasius flow. Appl Math Comput 198:333–338

    Article  MATH  MathSciNet  Google Scholar 

  2. Cortell R (2008) A numerical tackling on Sakiadis flow with thermal radiation. Chin Phys Lett 25:1340–1342

    Article  Google Scholar 

  3. Abdelhafez TA (1985) Skin friction and heat transfer on a continuous flat surface moving in a parallel free stream. Int J Heat Mass Transf 28:1234–1237

    Article  Google Scholar 

  4. Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068

    Article  ADS  MathSciNet  Google Scholar 

  5. Magyari E (2010) Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2010.03.020

    MathSciNet  Google Scholar 

  6. Bataller RC (2008) Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition. Appl Math Comput 206:832–840

    Article  MATH  MathSciNet  Google Scholar 

  7. Afzal N, Badaruddin A, Elgarvi AA (1993) Momentum and transport on a continuous flat surface moving in a parallel stream. Int J Heat Mass Transf 36:3399–3403

    Article  MATH  Google Scholar 

  8. Ishak A, Nazar R, Pop I (2007) Boundary layer on a moving wall with suction and injection. Chin Phys Lett 24:2274–2276

    Article  Google Scholar 

  9. Rosseland S (1936) Theoretical astrophysics. Oxford University, New York

    Google Scholar 

  10. Siegel R, Howell JR (1992) Thermal radiation: heat transfer, 3rd edn. Hemisphere, Washington

    Google Scholar 

  11. Bataller RC (2008) Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. Phys Lett A 372:2431–2439

    Article  ADS  MATH  Google Scholar 

  12. Bataller RC (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J Mater Process Technol 203:176–183

    Article  Google Scholar 

  13. Pal D (2009) Heat and mass transfer in stagnation-point flow towards a stretching surface in the presence of buoyancy force and thermal radiation. Meccanica 44:145–158

    Article  Google Scholar 

  14. Pal D, Mondal H (2009) Radiation effects on combined convection over a vertical flat plate embedded in a porous medium of variable porosity. Meccanica 44:133–144

    Article  MathSciNet  Google Scholar 

  15. Mukhopadhyay S, Layek GC (2009) Radiation effect on forced convective flow and heat transfer over a porous plate in a porous medium. Meccanica 44:587–597

    Article  MathSciNet  Google Scholar 

  16. Ishak A (2010) Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45:367–373

    Article  Google Scholar 

  17. Ishak A, Nazar R, Pop I (2008) Local similarity solutions for laminar boundary layer flow along a moving cylinder in a parallel stream. LNCS Comput Math 5081:224–235

    Article  Google Scholar 

  18. Blasius H (1908) Grenzschichten in flüssigkeiten mit kleiner reibung. Z Math Phys 56:1–37

    Google Scholar 

  19. Sakiadis BC (1961) Boundary-layer behaviour on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7:26–28

    Article  Google Scholar 

  20. Ishak A, Nazar R, Pop I (2006) Mixed convection boundary layers in the stagnation-point flow towards a stretching vertical sheet. Meccanica 41:509–518

    Article  MATH  Google Scholar 

  21. Ishak A, Nazar R, Pop I (2008) Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. Meccanica 43:411–418

    Article  MATH  Google Scholar 

  22. Yacob NA, Ishak A (2010) Stagnation-point flow towards a strecthing surface immersed in a micropolar fluid with prescribed surface heat flux. Sains Malays 39:285–290

    Google Scholar 

  23. Bachok N, Ishak A (2010) Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malays J Math Sci 4(2):159–170

    MathSciNet  Google Scholar 

  24. Bachok N, Ishak A, Pop I (2010) Mixed convection boundary layer flow near the stagnation point on a vertical surface embedded in a porous medium with anisotropy effect. Transp Porous Med 82:363–373

    Article  MathSciNet  Google Scholar 

  25. Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Thermal Sci. 49:1663–1668

    Article  Google Scholar 

  26. Klemp JB, Acrivos A (1972) A method for integrating the boundary-layer equations through a region of reverse flow. J Fluid Mech 53:177–191

    Article  ADS  MATH  Google Scholar 

  27. Merkin JH (1985) On dual solutions occurring in mixed convection in a porous medium. J Eng Math 20:171–179

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuar Ishak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishak, A., Yacob, N.A. & Bachok, N. Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica 46, 795–801 (2011). https://doi.org/10.1007/s11012-010-9338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9338-4

Keywords

Navigation