Skip to main content
Log in

13-Moment System with Global Hyperbolicity for Quantum Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We point out that the quantum Grad’s 13-moment system (Yano in Physica A 416:231–241, 2014) is lack of global hyperbolicity, and even worse, the thermodynamic equilibrium is not an interior point of the hyperbolicity region of the system. To remedy this problem, by fully considering Grad’s expansion, we split the expansion into the equilibrium part and the non-equilibrium part, and propose a regularization for the system with the help of the new hyperbolic regularization theory developed in Cai et al. (SIAM J Appl Math 75(5):2001–2023, 2015) and Fan et al. (J Stat Phys 162(2):457–486, 2016). This provides us a new model which is hyperbolic for all admissible thermodynamic states, and meanwhile preserves the approximate accuracy of the original system. It should be noted that this procedure is not a trivial application of the hyperbolic regularization theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Maple is a trademark of Waterloo Maple Inc.

References

  1. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system in one dimensional space. Commun. Math. Sci. 11(2), 547–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, Z., Fan, Y., Li, R.: On hyperbolicity of 13-moment system. Kinet. Relat. Models 7(3), 415–432 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, Z., Fan, Y., Li, R.: A framework on moment model reduction for kinetic equation. SIAM J. Appl. Math. 75(5), 2001–2023 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chapman, S.: On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas. Philos. Trans. R. Soc. A 216(538–548), 279–348 (1916)

    Article  ADS  Google Scholar 

  6. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463 (1999)

    Article  ADS  Google Scholar 

  7. Fan, Y., Koellermeier, J., Li, J., Li, R., Torrilhon, M.: Model reduction of kinetic equations by operator projection. J. Stat. Phys. 162(2), 457–486 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ikenberry, E., Truesdell, C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. I. J. Ration. Mech. Anal. 5(1), 1–54 (1956)

    MathSciNet  MATH  Google Scholar 

  10. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37, 2nd edn. Springer, New York (1998)

  11. Nouri, A.: An existence result for a quantum BGK model. Math. Comput. Model. 47(3), 515–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein–Bose and Fermi–Dirac gases. I. Phys. Rev. 43(7), 552 (1933)

    Article  ADS  MATH  Google Scholar 

  13. Yano, R.: Semi-classical expansion of distribution function using modified Hermite polynomials for quantum gas. Physica A 416, 231–241 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Yano, R.: On quantum Fokker–Planck equation. J. Stat. Phys. 158(1), 231–247 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Y. Di was supported by the National Natural Science Foundation of China (Grant No. 11271358). Fan and Li were supported in part by the National Natural Science Foundation of China (Grant No. 91330205, 11421110001, 11421101 and 11325102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwei Fan.

Appendix 1: Coefficients of (22) and (25)

Appendix 1: Coefficients of (22) and (25)

The coefficients in (22) and (25) can be directly obtained by calculating the determinant of the matrix \(\mathbf{{A}}_1\). Here we list the coefficients in (22) and (25) as following.

$$\begin{aligned} c_0= & {} \frac{3\left( 7{\mathrm {Li}_{\frac{3}{2}}}{\mathrm {Li}_{\frac{7}{2}}}-5{\mathrm {Li}_{\frac{5}{2}}}^2 \right) }{5{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{5}{2}}}-3{\mathrm {Li}_{\frac{3}{2}}}^2},\\ c_1= & {} \frac{140{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{5}{2}}}{\mathrm {Li}_{\frac{9}{2}}} +175{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{7}{2}}}^2 - 84{\mathrm {Li}_{\frac{3}{2}}}^2{\mathrm {Li}_{\frac{9}{2}}} -75{\mathrm {Li}_{\frac{3}{2}}}{\mathrm {Li}_{\frac{5}{2}}}{\mathrm {Li}_{\frac{7}{2}}}}{15{\mathrm {Li}_{\frac{7}{2}}}\left( 5{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{5}{2}}}-3{\mathrm {Li}_{\frac{3}{2}}}^2 \right) },\\ c_2= & {} \frac{1}{{\mathrm {Li}_{\frac{3}{2}}}^2{\mathrm {Li}_{\frac{7}{2}}}^3\left( 5{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{5}{2}}}-3{\mathrm {Li}_{\frac{3}{2}}}^2 \right) } \\&\times \left[ -735{{\mathrm {Li}_{\frac{3}{2}}}}^{3}{{\mathrm {Li}_{\frac{7}{2}}}}^{3}{\mathrm {Li}_{\frac{9}{2}}} +560\,{\epsilon }^{2}{\mathrm {Li}_{\frac{1}{2}}}{{\mathrm {Li}_{\frac{5}{2}}}}^{2}{{\mathrm {Li}_{\frac{7}{2}}}}^{2} \left( {\mathrm {Li}_{\frac{5}{2}}}{\mathrm {Li}_{\frac{ {9}}{2}}}-{{\mathrm {Li}_{\frac{7}{2}}}}^{2} \right) \right. \\&\left. +\,294 {{\mathrm {Li}_{\frac{3}{2}}}}^{2}{{\mathrm {Li}_{\frac{5}{2}}}}^{2}{\mathrm {Li}_{\frac{9}{2}}} \left( {\epsilon }^{2}{\mathrm {Li}_{\frac{5}{2}}}{\mathrm {Li}_{\frac{9}{2}}} - \left( \frac{17\epsilon ^2}{7}-\frac{25}{14} \right) {\mathrm {Li}_{\frac{7}{2}}}^2 \right) \right. \\&\left. +{\epsilon }^{2}{\mathrm {Li}_{\frac{3}{2}}}{{\mathrm {Li}_{\frac{5}{2}}}}^{2}{\mathrm {Li}_{\frac{7}{2}}}\left( 196{\mathrm {Li}_{\frac{1}{2}}}{{\mathrm {Li}_{\frac{9}{2}}}}^{2} - {210{{\mathrm {Li}_{\frac{5}{2}}}}^{2}{\mathrm {Li}_{\frac{9}{2}}}} +450{\mathrm {Li}_{\frac{5}{2}}}{{\mathrm {Li}_{\frac{7}{2}}}}^{2} \right) \right] , \\ c_3= & {} \frac{1}{3{\mathrm {Li}_{\frac{7}{2}}}^2{\mathrm {Li}_{\frac{3}{2}}}^2\left( 5{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{5}{2}}}-3{\mathrm {Li}_{\frac{3}{2}}}^2 \right) } \\&\times \, \left[ -588{{\mathrm {Li}_{\frac{3}{2}}}}^{4}{{\mathrm {Li}_{\frac{9}{2}}}}^{2} +720 \,{\epsilon }^{2}{\mathrm {Li}_{\frac{1}{2}}}{{\mathrm {Li}_{\frac{5}{2}}}}^{3}{{\mathrm {Li}_{\frac{7}{2}}}}^{2}+ {{\mathrm {Li}_{\frac{3}{2}}}}^{3}\left( -525 \,{\mathrm {Li}_{\frac{5}{2}}}{\mathrm {Li}_{\frac{7}{2}}}{\mathrm {Li}_{\frac{9}{2}}}+1575\,{{\mathrm {Li}_{\frac{7}{2}}}}^{3} \right) \right. \\&\left. +\, {{\mathrm {Li}_{\frac{3}{2}}}}^{2}\left( \left( \left( -432\,{ \epsilon }^{2}-1125 \right) {{\mathrm {Li}_{\frac{5}{2}}}}^{2}+1225\,{\mathrm {Li}_{\frac{1}{2}}} {\mathrm {Li}_{\frac{9}{2}}} \right) {{\mathrm {Li}_{\frac{7}{2}}}}^{2}+980\,{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{5}{2}}}{{\mathrm {Li}_{\frac{9}{2}}}}^{2} \right) \right] ,\\ c_4= & {} \frac{\left( -1225\,{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{9}{2}}}+375\,{\mathrm {Li}_{\frac{3}{2}}}{\mathrm {Li}_{\frac{7}{2}}} \right) {\mathrm {Li}_{\frac{5}{2}}}-875\,{\mathrm {Li}_{\frac{1}{2}}}{{\mathrm {Li}_{\frac{7}{2}}}}^{2}+735\,{{\mathrm {Li}_{\frac{3}{2}}}}^{2}{\mathrm {Li}_{\frac{9}{2}}}}{3{\mathrm {Li}_{\frac{7}{2}}}\left( 5{\mathrm {Li}_{\frac{1}{2}}}{\mathrm {Li}_{\frac{5}{2}}}-3{\mathrm {Li}_{\frac{3}{2}}}^2\right) }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, Y., Fan, Y. & Li, R. 13-Moment System with Global Hyperbolicity for Quantum Gas. J Stat Phys 167, 1280–1302 (2017). https://doi.org/10.1007/s10955-017-1768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1768-0

Keywords

Navigation