Skip to main content
Log in

Partial blood replacement ameliorates middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 cascades in rats

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Acute ischemic stroke is a catastrophic medical condition that causes severe disability and mortality if the sufferer escapes treatment within a stipulated timeframe. While timely intervention with clot-bursting agents like tissue-plasminogen activators abrogates some post-stroke neurologic deficits, no neuroprotective therapy is yet promisingly addresses the post-recanalization neuroinflammation in post-stroke survivors. Herein, we investigated the effect of partial blood replacement therapy (BRT), obtained from healthy and treadmill-trained donor rats, on neurological deficits, and peripheral and central inflammatory cascades using the ischemia-reperfusion animal paradigm. The cerebral ischemia-reperfusion was induced in rats by occlusion of the middle cerebral artery (MCAO) for 90 min, followed by reperfusion. Rats underwent MCAO surgery displayed remarkable sensorimotor and motor deficits in rotarod, foot fault, adhesive removal, and paw whisker tests till 5 days post-surgery. These behavior abnormalities were ameliorated in the BRT-recipient MCAO rats. BRT also reduced the infarct volume and neuronal death in the ipsilateral hemisphere revealed by TTC and cresyl violet staining compared to the MCAO group. Rats received BRT infusion exhibited the reduced expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule-1 (Iba-1), and MyD88 on day 5 post-MCAO in immunohistochemistry and immunofluorescent assays. Moreover, elevated levels of toll-like receptor 4 (TLR4) and mRNA expression of IL-1β, TNF-α, matrix metalloproteinase-9 and NLRP3, and decreased levels of zonula occludens-1 in MCAO rats, were reversed following BRT. These findings suggest that the partial BRT may rescind MCAO-induced neurological dysfunctions and cerebral injury by intervening in the TLR4 and NLRP3 pathways in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Adams V, Linke A (2019) Impact of exercise training on cardiovascular disease and risk. Biochim. Biophys. Acta (BBA)-Molecular basis dis. 1865:728–734

  • Asahi M, Asahi K, Jung J-C, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab 20:1681–1689

    Article  CAS  Google Scholar 

  • Babaei P, Hosseini R (2022) Exercise training modulates adipokines dysregulations in metabolic syndrome. Sport. Med. Heal. Sci

  • Bai B, Yang Y, Wang QI, Li M, Tian C, Liu Y, Aung LHH, Li P, Yu T, Chu X (2020) NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 11:776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian R, Bazaz MR, Pasam T, Sharief N, Velip L, Samanthula G, Dandekar MP (2022) Involvement of Microbiome Gut–Brain Axis in Neuroprotective Effect of Quercetin in Mouse Model of repeated mild traumatic brain Injury. NeuroMolecular Med. 1–13

  • Batista Jr ML, Rosa JC, Lopes RD, Lira FS, Martins E Jr, Yamashita AS, Brum PC, Lancha AH Jr, Lopes AC, Seelaender M (2010) Exercise training changes IL-10/TNF-α ratio in the skeletal muscle of post-MI rats. Cytokine 49:102–108

    Article  CAS  PubMed  Google Scholar 

  • Beg AA (2002) Endogenous ligands of toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 23:509–512

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR, Laughton WB, Powley TL (1986) A method for large volume blood sampling and transfusion in rats. Am J Physiol Metab 250:E331–E337

    CAS  Google Scholar 

  • Bolaños JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta (BBA)-Bioenergetics 1411:415–436

    Article  PubMed  Google Scholar 

  • Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4:1560–1564

    Article  CAS  PubMed  Google Scholar 

  • Bouët V, Freret T, Toutain J, Divoux D, Boulouard M, Schumann-Bard P (2007) Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol 203:555–567

    Article  PubMed  Google Scholar 

  • Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, Hoda MN, Dhandapani KM (2017) White matter damage after traumatic brain injury: a role for damage associated molecular patterns. Biochim Biophys Acta (BBA)-Molecular Basis Dis 1863:2614–2626

    Article  CAS  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Burhoe SO (1947) Blood groups of the rat (Rattus norvegicus) and their inheritance. Proc Natl Acad Sci 33:102–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano JM (2019) Blood-based therapies to combat aging. Gerontology 65:84–89

    Article  PubMed  Google Scholar 

  • Chaturvedi M, Kaczmarek L (2014) Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol 49:563–573

    Article  CAS  PubMed  Google Scholar 

  • Chumboatong W, Khamchai S, Tocharus C, Govitrapong P, Tocharus J (2022) Agomelatine exerts an anti-inflammatory effect by inhibiting microglial activation through TLR4/NLRP3 pathway in pMCAO rats. Neurotox Res 40:259–266

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Choi RJ, Khan S, Lee D-S, Kim Y-C, Nam Y-J, Lee D-U, Kim YS (2012) Alantolactone suppresses inducible nitric oxide synthase and cyclooxygenase-2 expression by down-regulating NF-κB, MAPK and AP-1 via the MyD88 signaling pathway in LPS-activated RAW 264.7 cells. Int Immunopharmacol 14:375–383

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Chen S, Zhang C, Meng F, Wu W, Hu R, Hadass O, Lehmidi T, Blair GJ, Lee M (2012) Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener 7:1–15

    Article  Google Scholar 

  • Dai M, Wu L, Yu K, Xu R, Wei Y, Chinnathambi A, Alahmadi TA, Zhou M (2020) D-Carvone inhibit cerebral ischemia/reperfusion induced inflammatory response TLR4/NLRP3 signaling pathway. Biomed Pharmacother 132:110870

    Article  CAS  PubMed  Google Scholar 

  • Dandekar MP, Yin X, Peng T, Devaraj S, Morales R, McPherson DD, Huang S-L (2022) Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction. J Affect Disord 301:315–330

    Article  CAS  PubMed  Google Scholar 

  • Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, Veeresh P, Kotian V, Kalia K, Borah A (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res 11:1185–1202

    Article  PubMed  Google Scholar 

  • Del Zoppo GJ (2010) The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci 1207:46–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhanda S, Sandhir R (2018) Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins. Mol Neurobiol 55:3642–3659

    CAS  PubMed  Google Scholar 

  • Downes CE, Crack PJ (2010) Neural injury following stroke: are toll-like receptors the link between the immune system and the CNS? Br. J Pharmacol 160:1872–1888

    CAS  Google Scholar 

  • Dugue R, Nath M, Dugue A, Barone FC (2017) Roles of pro-and anti-inflammatory cytokines in traumatic brain injury and acute ischemic stroke. Mech Neuroinflamm 211

  • Durukan A, Marinkovic I, Strbian D, Pitkonen M, Pedrono E, Soinne L, Abo-Ramadan U, Tatlisumak T (2009) Post-ischemic blood–brain barrier leakage in rats: one-week follow-up by MRI. Brain Res 1280:158–165

    Article  CAS  PubMed  Google Scholar 

  • Dziedzic T (2015) Systemic inflammation as a therapeutic target in acute ischemic stroke. Expert Rev Neurother 15:523–531

    Article  CAS  PubMed  Google Scholar 

  • Estcourt LJ, Kohli R, Hopewell S, Trivella M, Wang WC (2020) Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease. Cochrane Database Syst. Rev

  • Fan Y-Y, Hu W-W, Nan F, Chen Z (2017) Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 107:43–56

    Article  CAS  PubMed  Google Scholar 

  • Farokhi-Sisakht F, Sadigh-Eteghad S, Mohaddes G, Ebrahimi-Kalan A, Karimi P, Farhoudi M (2020) Physical and cognitive training attenuate hippocampal ischemia-induced memory impairments in rat. Brain Res Bull 155:202–210

    Article  CAS  PubMed  Google Scholar 

  • Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P (2022) World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke 17:18–29

    Article  PubMed  Google Scholar 

  • Feng H, Qi Y, Wang X, Chen F, Li X (2022) Treadmill Exercise decreases inflammation Via modulating IL-6 expression in the rat model of Middle cerebral artery occlusion. Neurocrit Care 1–9

  • Freret T, Valable S, Chazalviel L, Saulnier R, Mackenzie ET, Petit E, Bernaudin M, Boulouard M, Schumann-Bard P (2006) Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur J Neurosci 23:1757–1765

    Article  PubMed  Google Scholar 

  • Freret T, Bouet V, Leconte C, Roussel S, Chazalviel L, Divoux D, Schumann-Bard P, Boulouard M (2009) Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci 123:224

    Article  PubMed  Google Scholar 

  • Gong Z, Pan J, Shen Q, Li M, Peng Y (2018) Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 15:1–17

    Article  Google Scholar 

  • Grønberg NV, Johansen FF, Kristiansen U, Hasseldam H (2013) Leukocyte infiltration in experimental stroke. J Neuroinflammation 10:1–9

    Article  Google Scholar 

  • Guo M, Cox B, Mahale S, Davis W, Carranza A, Hayes K, Sprague S, Jimenez D, Ding Y (2008) Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood–brain barrier dysfunction in stroke. Neuroscience 151:340–351

    Article  CAS  PubMed  Google Scholar 

  • Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, Del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19:624–633

    Article  CAS  PubMed  Google Scholar 

  • Hua F, Ma J, Ha T, Kelley JL, Kao RL, Schweitzer JB, Kalbfleisch JH, Williams DL, Li C (2009) Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res 1262:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16:1–24

    Article  Google Scholar 

  • Jover-Mengual T, Hwang J-Y, Byun H-R, Court-Vazquez BL, Centeno JM, Burguete MC, Zukin RS (2021) The role of NF-κB triggered inflammation in cerebral ischemia. Front Cell Neurosci 15:633610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kago T, Takagi N, Date I, Takenaga Y, Takagi K, Takeo S (2006) Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun 339:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Kes VB, Simundic A-M, Nikolac N, Topic E, Demarin V (2008) Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin Biochem 41:1330–1334

    Article  Google Scholar 

  • Khoury R, Ghossoub E (2018) Young blood products: emerging treatment for Alzheimer’s disease? Neural Regen Res 13:624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi J (1986) Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J stroke 8:1–8

    Article  Google Scholar 

  • Komotar RJ, Kim GH, Sughrue ME, Otten ML, Rynkowski MA, Kellner CP, Hahn DK, Merkow MB, Garrett MC, Starke RM (2007) Neurologic assessment of somatosensory dysfunction following an experimental rodent model of cerebral ischemia. Nat Protoc 2:2345–2347

    Article  CAS  PubMed  Google Scholar 

  • Lambertsen KL, Finsen B, Clausen BH (2019) Post-stroke inflammation—target or tool for therapy? Acta Neuropathol 137:693–714

    Article  PubMed  Google Scholar 

  • Li Y, Liang W, Guo C, Chen X, Huang Y, Wang H, Song L, Zhang D, Zhan W, Lin Z (2020) Renshen Shouwu extract enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-κB/NLRP3 signaling pathway following ischemic stroke in rats. J Ethnopharmacol 253:112616

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X (2022) The natural (poly) phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 914:174660

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Wang X, Yu Z (2016) Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem. Pharmacol. open access 5

  • Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J. Biomed. Biotechnol. 2011

  • Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X (2019) Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front Immunol 10:2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Ma W, Zang C-H, Wang G-D, Zhang S-J, Wu H-J, Zhu K-W, Xiang X-L, Li C-Y, Liu K-P (2021) Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway. Ann Transl Med 9

  • Lo EH, Moskowitz MA, Jacobs TP (2005) Exciting, radical, suicidal: how brain cells die after stroke. Stroke 36:189–192

    Article  PubMed  Google Scholar 

  • Lu J, Wang J, Yu L, Cui R, Zhang Y, Ding H, Yan G (2021) Treadmill Exercise attenuates cerebral ischemia–reperfusion Injury by promoting activation of M2 Microglia via Upregulation of Interleukin-4. Front Cardiovasc Med 8:735485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumsden T (1938) Agglutination tests in the study of tumour immunity, natural and acquired. Am J Cancer 32:395–417

    Google Scholar 

  • Luo Y, Reis C, Chen S (2019) NLRP3 inflammasome in the pathophysiology of hemorrhagic stroke: a review. Curr Neuropharmacol 17:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Liu M, Fan Y, Zhang J, Liu L, Li Y, Zhang Q, Xie H, Jiang C, Wu J (2022) Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J Neuroinflammation 19:1–27

    Article  Google Scholar 

  • Mamtilahun M, Jiang L, Song Y, Shi X, Liu C, Jiang Y, Deng L, Zheng H, Shen H, Li Y (2021a) Plasma from healthy donors protects blood–brain barrier integrity via FGF21 and improves the recovery in a mouse model of cerebral ischaemia. Stroke Vasc Neurol. 6

  • Mamtilahun M, Wei Z, Qin C, Wang Y, Tang Y, Shen F, Tian H-L, Zhang Z, Yang G-Y (2021b) DL-3n-Butylphthalide improves blood–brain barrier integrity in rat after middle cerebral artery occlusion. Front Cell Neurosci 14:610714

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  • Middeldorp J, Lehallier B, Villeda SA, Miedema SSM, Evans E, Czirr E, Zhang H, Luo J, Stan T, Mosher KI (2016) Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol 73:1325–1333

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyajima N, Ito M, Rokugawa T, Iimori H, Momosaki S, Omachi S, Shimosegawa E, Hatazawa J, Abe K (2018) Detection of neuroinflammation before selective neuronal loss appearance after mild focal ischemia using [18 F] DPA-714 imaging. EJNMMI Res 8:1–12

    Article  CAS  Google Scholar 

  • Pawluk H, Woźniak A, Grześk G, Kołodziejska R, Kozakiewicz M, Kopkowska E, Grzechowiak E, Kozera G (2020) The role of selected pro-inflammatory cytokines in pathogenesis of ischemic stroke. Clin Interv Aging 15:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen BK (2017) Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 47:600–611

    Article  CAS  PubMed  Google Scholar 

  • Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z, Dandekar MP (2021) Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. J Neuroimmunol 577498

  • Rahman Z, Dwivedi DK, Jena GB (2019) Ethanol-induced gastric ulcer in rats and intervention of tert-butylhydroquinone: involvement of Nrf2/HO-1 signalling pathway. Hum Exp Toxicol 1–16. https://doi.org/10.1177/0960327119895559

  • Rahman Z, Pasam T, Kr R, Dandekar MP (2022) Binary Classification Model of Machine Learning Detected Altered Gut Integrity in Controlled-Cortical Impact Model of Traumatic Brain Injury. https://doi.org/10.1080/00207454.2022.20952711-14

  • Ramírez-Sánchez J, Pires ENS, Meneghetti A, Hansel G, Nuñez-Figueredo Y, Pardo-Andreu GL, Ochoa-Rodríguez E, Verdecia-Reyes Y, Delgado-Hernández R, Salbego C (2019) JM-20 treatment after MCAO reduced astrocyte reactivity and neuronal death on peri-infarct regions of the rat brain. Mol Neurobiol 56:502–512

    Article  PubMed  Google Scholar 

  • Ren X, Hu H, Farooqi I, Simpkins JW (2020) Blood substitution therapy rescues the brain of mice from ischemic damage. Nat Commun 11:1–11

    Article  Google Scholar 

  • Salam JN, Fox JH, DeTroy EM, Guignon MH, Wohl DF, Falls WA (2009) Voluntary exercise in C57 mice is anxiolytic across several measures of anxiety. Behav Brain Res 197:31–40

    Article  PubMed  Google Scholar 

  • Santos Samary C, Pelosi P, Leme Silva P, Rieken Macedo Rocco P (2016) Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Crit Care 20:1–9

    Article  Google Scholar 

  • Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24:351–371

    Article  PubMed  Google Scholar 

  • Shi K, Tian D-C, Li Z-G, Ducruet AF, Lawton MT, Shi F-D (2019) Global brain inflammation in stroke. Lancet Neurol 18:1058–1066

    Article  PubMed  Google Scholar 

  • Shichita T (2018) Molecular and cellular mechanisms underlying the sterile inflammation after ischemic stroke. Nihon Yakurigaku Zasshi 151:9–14

    Article  CAS  PubMed  Google Scholar 

  • Simats A, Liesz A (2022) Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med. e16269

  • Singh AA, Kharwar A, Dandekar MP (2021) A review on preclinical models of ischemic stroke: insights into the Pathomechanisms and New Treatment Strategies. Curr. Neuropharmacol

  • Stamova B, Xu H, Jickling G, Bushnell C, Tian Y, Ander BP, Zhan X, Liu D, Turner R, Adamczyk P (2010) Gene expression profiling of blood for the prediction of ischemic stroke. Stroke 41:2171–2177

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson KV, Deng M, Ting JP-Y (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Cheng S, Sun Y, Zhang Y, Xiang X, Ouyang Z, Zhu X, Wang B, Hei M (2019) Early TLR4 inhibition reduces hippocampal injury at puberty in a rat model of neonatal hypoxic-ischemic brain damage via regulation of neuroimmunity and synaptic plasticity. Exp Neurol 321:113039

    Article  CAS  PubMed  Google Scholar 

  • Thompson JS, Gurney CW, Hanel A, Ford E, Hofstra D (1961) Survival of transfused blood in rats. Am J Physiol Content 200:327–331

    Article  CAS  Google Scholar 

  • Tsai K-L, Huang P-C, Wang L-K, Hung C-H, Chen Y-W (2017) Incline treadmill exercise suppresses pain hypersensitivity associated with the modulation of pro-inflammatory cytokines and anti-inflammatory cytokine in rats with peripheral nerve injury. Neurosci Lett 643:27–31

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xu Z, Chen X, Li Y, Chen C, Wang C, Zhu J, Wang Z, Chen W, Xiao Z (2018) MicroRNA-182-5p attenuates cerebral ischemia-reperfusion injury by targeting toll-like receptor 4. Biochem Biophys Res Commun 505:677–684

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Geng J, Qu M, Yuan F, Wang Y, Pan J, Li Y, Ma Y, Zhou P, Zhang Z, Yang GY (2020) Oligodendrocyte precursor cells transplantation protects blood–brain barrier in a mouse model of brain ischemia via Wnt/β-catenin signaling. Cell Death Dis 11. https://doi.org/10.1038/s41419-019-2206-9

  • Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo DY, Chae J, Jung HY, Yim S, Kim H, Nam JW, Kim SM, Choi DW, Seong JH, Yoon JK, Y.S (2015) Treadmill exercise is associated with reduction of reactive microgliosis and pro-inflammatory cytokine levels in the hippocampus of type 2 diabetic rats. Neurol Res 37:732–738

    Article  CAS  PubMed  Google Scholar 

  • Yoon JS, Jo D, Lee H-S, Yoo S-W, Lee T-Y, Hwang WS, Choi J-M, Kim E, Kim S-S, Suh-Kim H (2018) Spatiotemporal protein atlas of cell death-related molecules in the rat MCAO stroke model. Exp Neurobiol 27:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14:2592–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang J, Yan Y, Zhang P, Zhang W, Xia R (2017) Proinflammatory cytokines correlate with early exercise attenuating anxiety-like behavior after cerebral ischemia. Brain Behav 7, e00854

  • Zhao N, Xu X, Jiang Y, Gao J, Wang F, Xu, Xiaohui, Wen Z, Xie Y, Li J, Li R (2019) Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation. J Neuroinflammation 16:1–15

    Article  Google Scholar 

  • Zhou K, Wu J, Chen J, Zhou Y, Chen X, Wu Q, Xu Y, Tu W, Lou X, Yang G (2019) Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells. J Pharmacol Sci 139:15–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors (ZR, SG and MPD) want to thank the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India for financial support. NIPER.

Funding

MPD also thanks funding from the DST-SERB, File number SRG/2020/002439.

Author information

Authors and Affiliations

Authors

Contributions

ZR: Executed the study, prepared results, and drafted the manuscript; SG: assisted in preclinical study; MPD: Conceptualized, reviewed, and corrected the manuscript.

Corresponding author

Correspondence to Manoj P. Dandekar.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethics approval

All the experimental protocols were approved by the Institutional Animal Ethics Committee number NIPER/08/21/PC/428.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, Z., Ghuge, S. & Dandekar, M.P. Partial blood replacement ameliorates middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 cascades in rats. Metab Brain Dis 38, 2339–2354 (2023). https://doi.org/10.1007/s11011-023-01259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-023-01259-7

Keywords

Navigation