Ballard C, Lana MM, Theodoulou M, Douglas S, McShane R, Jacoby R, Kossakowski K, Yu LM, Juszczak E, Investigators DARTAD (2008) A randomised, blinded, placebo-controlled trial in dementia patients continuing or stopping neuroleptics (the DART-AD trial). PLoS Med 5:e76. https://doi.org/10.1371/journal.pmed.0050076
PubMed
PubMed Central
CAS
Article
Google Scholar
Ballard C, Hanney ML, Theodoulou M, Douglas S, McShane R, Kossakowski K, Gill R, Juszczak E, Yu LM, Jacoby R, investigators DART-AD (2009) The dementia antipsychotic withdrawal trial (DART-AD): long-term follow-up of a randomised placebo-controlled trial. Lancet Neurol 8:151–157. https://doi.org/10.1016/S1474-4422(08)70295-3
PubMed
CAS
Article
Google Scholar
Bardgett ME, Points M, Ramsey-Faulkner C, Topmiller J, Roflow J, McDaniel T, Lamontagne T, Griffith MS (2008) The effects of clonidine on discrete-trial delayed spatial alternation in two rat models of memory loss. Neuropsychopharmacology 33:1980–1991. https://doi.org/10.1038/sj.npp.1301580
PubMed
CAS
Article
Google Scholar
Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O'Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15:433 442. https://doi.org/10.1093/hmg/ddi458
Article
CAS
Google Scholar
Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325. https://doi.org/10.1038/361315a0
PubMed
CAS
Article
Google Scholar
Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. https://doi.org/10.1038/nrm1155
PubMed
CAS
Article
Google Scholar
Bharadwaj PR, Bates KA, Porter T, Teimouri E, Perry G, Steele JW, Gandy S, Groth D, Martins RN, Verdile G (2013) Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer's and other neurodegenerative diseases. Transl Psychiatry 3:e332. https://doi.org/10.1038/tp.2013.97
PubMed
PubMed Central
CAS
Article
Google Scholar
Breckler M, Berthouze M, Laurent AC, Crozatier B, Morel E, Lezoualc’h F (2011) Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications. Cell Signal 23:1257–1266. https://doi.org/10.1016/j.cellsig.2011.03.007
PubMed
CAS
Article
Google Scholar
Burkewitz K, Zhang Y, Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20:10–25. https://doi.org/10.1016/j.cmet.2014.03.002
PubMed
PubMed Central
CAS
Article
Google Scholar
Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120. https://doi.org/10.1074/jbc.M110.100420
PubMed
PubMed Central
CAS
Article
Google Scholar
Carew JS, Medina EC, Esquivel JA II, Mahalingam D, Swords R, Kelly K, Zhang H, Huang P, Mita AC, Mita MM, Giles FJ, Nawrocki ST (2009) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14:2448–2459. https://doi.org/10.1111/j.1582-4934.2009.00832.x
PubMed Central
CAS
Article
Google Scholar
Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, Court FA, van Zundert B, Hetz C (2013) Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 9:1308–1320. https://doi.org/10.4161/auto.25188
PubMed
CAS
Article
Google Scholar
Chau S, Herrmann N, Ruthirakuhan MT, Chen JJ, Lanctôt KL (2015) Latrepirdine for Alzheimer's disease. Cochrane Database Syst Rev 4:CD009524. https://doi.org/10.1002/14651858.CD009524.pub2
Article
Google Scholar
Cortes CJ, Qin K, Cook J, Solanki A, Mastrianni JA (2012) Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Sträussler-Scheinker disease. J Neurosci 32:12396–12405. https://doi.org/10.1523/JNEUROSCI.6189-11.2012
PubMed
PubMed Central
CAS
Article
Google Scholar
Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72
CAS
Article
Google Scholar
Danivas V, Moily NS, Thimmaiah R, Muralidharan K, Purushotham M, Muthane U, Jain S (2013) Off label use of lithium in the treatment of Huntington's disease: A case series. Indian J Psychiatry 55:81–83. https://doi.org/10.4103/0019-5545.105522
PubMed
PubMed Central
Article
Google Scholar
DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, Chi M, Newberry EP, Chen Z, Finck BN, Davidson NO, Yarasheski KE, Hruz PW, Moley KH (2016) Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal 9:ra21. https://doi.org/10.1126/scisignal.aac5472
PubMed
PubMed Central
Article
Google Scholar
Diepenbroek M, Casadei N, Esmer H, Saido TC, Takano J, Kahle PJ, Nixon RA, Rao MV, Melki R, Pieri L, Helling S, Marcus K, Krueger R, Masliah E, Riess O, Nuber S (2014) Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P] αSyn transgenic mice. Hum Mol Genet 23:3975–3989. https://doi.org/10.1093/hmg/ddu112
PubMed
PubMed Central
CAS
Article
Google Scholar
Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22:234–240. https://doi.org/10.1016/j.tem.2011.02.003
PubMed
PubMed Central
CAS
Article
Google Scholar
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of nervous system. Nature 447:1121–1125. https://doi.org/10.1038/nature05925
PubMed
Article
CAS
Google Scholar
Friso A, Tomanin R, Salvalaio M, Scarpa M (2010) Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br J Pharmacol 159:1082–1091
PubMed
PubMed Central
CAS
Article
Google Scholar
Gaballah HH, Zakaria SS, Elbatsh MM, Tahoon NM (2016) Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson's disease. Chem Biol Interact 251:10–16. https://doi.org/10.1016/j.cbi.2016.03.023
PubMed
CAS
Article
Google Scholar
Ganley IG, Wong PM, Gammoh N, Jiang X (2011) Distinct autophagosomal–lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 42:731–743. https://doi.org/10.1016/j.molcel.2011.04.024
PubMed
PubMed Central
CAS
Article
Google Scholar
Gautam S, Karmakar S, Batra R, Sharma P, Pradhan P, Singh J, Kundu B, Chowdhury PK (2017) Polyphenols in combination with β-cyclodextrin can inhibit and disaggregate α-synuclein amyloids under cell mimicking conditions: A promising therapeutic alternative. Biochim Biophys Acta 1865:589–603. https://doi.org/10.1016/j.bbapap.2017.02.014
PubMed
CAS
Article
Google Scholar
Girotti F, Carella F, Scigliano G, Grassi MP, Soliveri P, Giovannini P, Parati E, Caraceni T (1984) Effect of neuroleptic treatment on involuntary movements and motor performances in Huntington's disease. J Neurol Neurosurg Psychiatry 47:848–852. https://doi.org/10.1136/jnnp.47.8.848
PubMed
PubMed Central
CAS
Article
Google Scholar
Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanism. J Pathol 221:3–12. https://doi.org/10.1002/path.2697
PubMed
PubMed Central
CAS
Article
Google Scholar
Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375. https://doi.org/10.1146/annurev.pharmtox.010909.105714
PubMed
CAS
Article
Google Scholar
Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801. https://doi.org/10.1152/physrev.00029.2002
PubMed
CAS
Article
Google Scholar
Gordon PB, Holen I, Fosse M, Røtnes JS, Seglen PO (1993) Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 268:26107–26112
PubMed
CAS
Google Scholar
Guo YJ, Dong SY, Cui XX, Feng Y, Liu T, Yin M, Kuo SH, Tan EK, Zhao WJ, Wu YC (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60:2161–2175. https://doi.org/10.1002/mnfr.201600111
PubMed
CAS
Article
PubMed Central
Google Scholar
Gutierrez MG, Munafó DB, Berón W, Colombo MI (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117:2687–2697. https://doi.org/10.1242/jcs.01114
PubMed
CAS
Article
Google Scholar
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) FIP200, a ULK1 interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510. https://doi.org/10.1083/jcb.200712064
PubMed
PubMed Central
Article
Google Scholar
Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785. https://doi.org/10.1038/nrm2249
PubMed
CAS
Article
Google Scholar
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437. https://doi.org/10.1038/ncb1991
PubMed
Article
Google Scholar
Hill MP, Brotchie JM (1999) The adrenergic receptor agonist, clonidine, potentiates the anti-parkinsonian action of the selective κ-opioid receptor agonist, enadoline, in the monoamine-depleted rat. Br J Pharmacol 128:1577–1585
PubMed
PubMed Central
CAS
Article
Google Scholar
Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF (2010) Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease. Exp Neurol 225:74–84. https://doi.org/10.1016/j.expneurol.2010.05.006
PubMed
CAS
Article
Google Scholar
Höllerhage M, Goebel JN, de Andrade A, Hildebrandt T, Dolga A, Culmsee C, Oertel WH, Hengerer B, Höglinger GU (2014) Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity. Neurobiol Aging 35:1700–1711. https://doi.org/10.1016/j.neurobiolaging.2014.01.027
PubMed
CAS
Article
Google Scholar
Horvath J, Coeytaux A, Jallon P, Landis T, Temperli P, Burkhard PR (2005) Carbamazepine encephalopathy masquerading as Creutzfeldt-Jakob disease. Neurology 65:650–651. https://doi.org/10.1212/01.wnl.0000173035.58682.64
PubMed
CAS
Article
Google Scholar
Hosokawa N, Sasaki T, Iemura SI, Natsume T, Hara T, Mizushima N (2009a) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–979
PubMed
CAS
Article
Google Scholar
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009b) Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991. https://doi.org/10.1091/mbc.E08-12-1248
PubMed
PubMed Central
CAS
Article
Google Scholar
Høyer-Hansen M, Jäättelä M (2007) AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3:381–383
PubMed
Article
Google Scholar
Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190. https://doi.org/10.1042/BJ20080281
PubMed
PubMed Central
CAS
Article
Google Scholar
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590
PubMed
CAS
Article
Google Scholar
Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968. https://doi.org/10.1016/j.cell.2006.06.055
PubMed
CAS
Article
Google Scholar
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128. https://doi.org/10.1038/ncb1183
PubMed
CAS
Article
Google Scholar
Jung CH, Ro SH, Chao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017
PubMed
PubMed Central
CAS
Article
Google Scholar
Kalonia H, Kumar P, Kumar A (2011) Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats. Brain Res 1372:115–126. https://doi.org/10.1016/j.brainres.2010.11.060
PubMed
CAS
Article
Google Scholar
Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM (2011) Chaperon-mediated autophagy at a glance. J Cell Sci 124:495–499. https://doi.org/10.1242/jcs.073874
PubMed
PubMed Central
CAS
Article
Google Scholar
Kawata Y, Okada M, Murakami T, Kamata A, Zhu G, Kaneko S (2001) Pharmacological discrimination between effects of carbamazepine on hippocampal basal, Ca2+- and K+-evoked serotonin release. Br J Pharmacol 133:557–567
PubMed
PubMed Central
CAS
Article
Google Scholar
Kim R (2005) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103:1551–1560. https://doi.org/10.1002/cncr.20947
PubMed
CAS
Article
Google Scholar
Kim J, Kim E (2016) Rag GTPase in amino acid signaling. Amino Acids 48:915–928. https://doi.org/10.1007/s00726-016-2171-x
PubMed
CAS
Article
Google Scholar
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175. https://doi.org/10.1016/S0092-8674(02)00808-5
PubMed
CAS
Article
Google Scholar
Kim KH, Dodsworth C, Paras A, Burton BK (2013) High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system. Mol Genet Metab 109:382–385
PubMed
CAS
Article
Google Scholar
Kim YD, Jeong EI, Nah J, Yoo SM, Lee WJ, Kim Y, Moon S, Hong SH, Jung YK (2017) Pimozide reduces toxic forms of tau in TauC3 mice via 5' adenosine monophosphate-activated protein kinase-mediated autophagy. J Neurochem 142:734–746. https://doi.org/10.1111/jnc.14109
PubMed
CAS
Article
Google Scholar
Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2005) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276
Article
Google Scholar
Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18. https://doi.org/10.1242/jcs.01620
PubMed
PubMed Central
CAS
Article
Google Scholar
Köchl R, Hu XW, Chan EY, Tooze SA (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7:129–145. https://doi.org/10.1111/j.1600-0854.2005.00368.x
PubMed
CAS
Article
Google Scholar
Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734. https://doi.org/10.1038/nrc1692
PubMed
CAS
Article
Google Scholar
Kost A, Kasprowska D, Łabuzek K, Wiaderkiewicz R, Gabryel B (2011) Autofagia w niedokrwieniu mózgu. Postepy Hig Med Dosw 65:524–533
Article
Google Scholar
Krüger U, Wang Y, Kumar S, Mandelkow EM (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33:2291–2305. https://doi.org/10.1016/j.neurobiolaging.2011.11.009
PubMed
CAS
Article
Google Scholar
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036. https://doi.org/10.1038/nature03029
PubMed
CAS
Article
Google Scholar
Kumar P, Padi SS, Naidu PS, Kumar A (2006) Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol 17:485–492
PubMed
CAS
Article
Google Scholar
Lan DM, Liu FT, Zhao J, Chen Y, Wu JJ, Ding ZT, Yue ZY, Ren HM, Jiang YP, Wang J (2012) Effect of trehalose on PC12 cells overexpressing wild-type or A53T mutant α-synuclein. Neurochem Res 37:2025–2032. https://doi.org/10.1007/s11064-012-0823-0
PubMed
CAS
Article
Google Scholar
Lauterbach EC (2013) Neuroprotective effects of psychotropic drugs in Huntington's disease. Int J Mol Sci 14:22558–22603. https://doi.org/10.3390/ijms141122558
PubMed
PubMed Central
CAS
Article
Google Scholar
Legendre C, Casagrande F, Andrieu T, Dormont D, Clayette P (2007) Sodium valproate does not augment Prpsc in murine neuroblastoma cells. Neurotox Res 12:205–208
PubMed
CAS
Article
Google Scholar
Lermontova NN, Lukoyanov NV, Serkova TP, Lukoyanova EA, Bachurin SO (2000) Dimebon improves learning in animals with experimental Alzheimer's disease. Bull Exp Biol Med 129:544–546
PubMed
CAS
Article
Google Scholar
Lermontova NN, Redkozubov AE, Shevtsova EF, Serkova TP, Kireeva EG, Bachurin SO (2001) Dimebon and tacrine inhibit neurotoxic action of beta-amyloid in culture and block L-type Ca(2+) channels. Bull Exp Biol Med 132:1079–1083
PubMed
CAS
Article
Google Scholar
Li XZ, Chen XP, Zhao K, Bai LM, Zhang H, Zhou XP (2013) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci 123:73–79. https://doi.org/10.3109/00207454.2012.729234
PubMed
CAS
Article
Google Scholar
Liang C, Jung JU (2010) Autophagy genes as tumor suppressors. Curr Opin Cell Biol 22:226–233. https://doi.org/10.1016/j.ceb.2009.11.003
PubMed
CAS
Article
Google Scholar
Linares GR, Chiu CT, Scheuing L, Leng Y, Liao HM, Maric D, Chuang DM (2016) Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease. Exp Neurol 281:81–92. https://doi.org/10.1016/j.expneurol.2016.04.003
PubMed
CAS
Article
Google Scholar
Liu XW, Su Y, Zhu H, Cao J, Ding WJ, Zhao YC, He QJ, Yang B (2010) HIF-1a-dependent autophagy protects HeLa cells from fenretinide (4-HPR)-induced apoptosis in hypoxia. Pharmacol Res 62:416–425. https://doi.org/10.1016/j.phrs.2010.07.002
PubMed
CAS
Article
Google Scholar
Long Z, Zeng Q, Wang K, Sharma A, He G (2016) Gender difference in valproic acid-induced neuroprotective effects on APP/PS1 double transgenic mice modeling Alzheimer's disease. Acta Biochim Biophys Sin Shanghai 48:930–938. https://doi.org/10.1093/abbs/gmw085
PubMed
CAS
Article
Google Scholar
Majerus PW (1992) Inositol phosphate biochemistry. Annu Rev Biochem 61:225–250. https://doi.org/10.1146/annurev.bi.61.070192.001301
PubMed
CAS
Article
Google Scholar
Majumder S, Richardson A, Strong R, Oddo S (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 6:e25416. https://doi.org/10.1371/journal.pone.0025416
PubMed
PubMed Central
CAS
Article
Google Scholar
Malinowska M, Wilkinson FL, Bennett W, Langford-Smith KJ, O'Leary HA, Jakobkiewicz-Banecka J, Wynn R, Wraith JE, Wegrzyn G, Bigger BW (2009) Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Mol Genet Metab 98:235–242
PubMed
CAS
Article
Google Scholar
Malinowska M, Wilkinson FL, Langford-Smith KJ, Langford-Smith A, Brown JR, Crawford BE, Vanier MT, Grynkiewicz G, Wynn RF, Wraith JE, Wegrzyn G, Bigger BW (2010) Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS One 5:e14192
PubMed
PubMed Central
CAS
Article
Google Scholar
Mariňo G, López-Otín C (2004) Autophagy: molecular mechanism, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454. https://doi.org/10.1007/s00018-004-4012-4
PubMed
CAS
Article
Google Scholar
Massacesi C, di Tomaso E, Fretault N, Hirawat S (2013) Challenges in the clinical development of PI3K inhibitors. Ann N Y Acad Sci 1280:19–23. https://doi.org/10.1111/nyas.12060
PubMed
PubMed Central
CAS
Article
Google Scholar
Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Overview of macroautophagy regulation in mammalian cells. Cell Res 20:748–762. https://doi.org/10.1038/cr.2010.82
PubMed
Article
Google Scholar
Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462
PubMed
CAS
Article
Google Scholar
Meijer AJ, Codogno P (2007) AMP-activated protein kinase and autophagy. Autophagy 3:238–240
PubMed
CAS
Article
Google Scholar
Meléndez A, Tallóczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391. https://doi.org/10.1126/science.1087782
PubMed
CAS
Article
Google Scholar
Menzies FM, Garcia-Arencibia M, Imarisio S, O'Sullivan NC, Ricketts T, Kent BA, Rao MV, Lam W, Green-Thompson ZW, Nixon RA, Saksida LM, Bussey TJ, O'Kane CJ, Rubinsztein DC (2015) Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ 22:433–444. https://doi.org/10.1038/cdd.2014.151
PubMed
CAS
Article
Google Scholar
Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662
PubMed
CAS
Article
Google Scholar
Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7:673–682. https://doi.org/10.4161/auto.7.7.14733
PubMed
CAS
Article
Google Scholar
Miller RG, Shepherd R, Dao H, Khramstov A, Mendoza M, Graves J, Smith S (1996a) Controlled trial of nimodipine in amyotrophic lateral sclerosis. Neuromuscul Disord 6:101–104. https://doi.org/10.1016/0960-8966(95)00024-0
PubMed
CAS
Article
Google Scholar
Miller RG, Smith SA, Murphy JR, Brinkmann JR, Graves J, Mendoza M, Sands ML, Ringel SP (1996b) A clinical trial of verapamil in amyotrophic lateral sclerosis. Muscle Nerve 19:511–515. https://doi.org/10.1002/mus.880190405
PubMed
CAS
Article
Google Scholar
Milutinović A (2016) Lithium chloride could aggravate brain injury caused by 3-nitropropionic acid. Bosn J Basic Med Sci 16:261–267. https://doi.org/10.17305/bjbms.2016.1206
PubMed
PubMed Central
Article
CAS
Google Scholar
Mitterreiter S, Page RM, Kamp F, Hopson J, Winkler E, Ha HR, Hamid R, Herms J, Mayer TU, Nelson DJ, Steiner H, Stahl T, Zeitschel U, Rossner S, Haass C, Lichtenthaler SF (2010) Bepridil and amiodarone simultaneously target the Alzheimer's disease beta- and gamma-secretase via distinct mechanisms. J Neurosci 30:8974–8983. https://doi.org/10.1523/JNEUROSCI.1199-10.2010
PubMed
CAS
Article
Google Scholar
Mothi M, Sampson S (2013) Pimozide for schizophrenia or related psychoses. Cochrane Database Syst Rev 11:CD001949. https://doi.org/10.1002/14651858.CD001949.pub3
Article
Google Scholar
Murphy R, Freedman JE (2001) Morphine and clonidine activate different K+ channels on rat amygdala neurons. Eur J Pharmacol 415:R1–R3. https://doi.org/10.1016/S0014-2999(01)00797-X
PubMed
CAS
Article
Google Scholar
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanism: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467. https://doi.org/10.1038/nrm2708
PubMed
CAS
Article
Google Scholar
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534. https://doi.org/10.1016/j.cell.2008.11.044
PubMed
PubMed Central
CAS
Article
Google Scholar
Nimmrich V, Eckert A (2013) Calcium channel blockers and dementia. Br J Pharmacol 169:1203–1210. https://doi.org/10.1111/bph.12240
PubMed
PubMed Central
CAS
Article
Google Scholar
Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, Clavaguera F, Sinnreich M, Kappos L, Goedert M, Tolnay M, Winkler DT (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 8:e62459. https://doi.org/10.1371/journal.pone.0062459
PubMed
PubMed Central
CAS
Article
Google Scholar
Paris D, Bachmeier C, Patel N, Quadros A, Volmar CH, Laporte V, Ganey J, Beaulieu-Abdelahad D, Ait-Ghezala G, Crawford F, Mullan MJ (2011) Selective antihypertensive dihydropyridines lower Aβ accumulation by targeting both the production and the clearance of Aβ across the blood-brain barrier. Mol Med 17:149–162. https://doi.org/10.2119/molmed.2010.00180
PubMed
CAS
Article
Google Scholar
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939. https://doi.org/10.1016/j.cell.2005.07.002
PubMed
CAS
Article
Google Scholar
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90:313–323. https://doi.org/10.1016/j.biochi.2007.08.014
PubMed
CAS
Article
Google Scholar
Perera ND, Sheean RK, Lau CL, Shin YS, Beart PM, Horne MK, Turner BJ (2017) Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 5:1–18
Google Scholar
Perucho J, Gómez A, Muñoz MP, de Yébenes JG, Mena MÁ, Casarejos MJ (2016) Trehalose rescues glial cell dysfunction in striatal cultures from HD R6/1 mice at early postnatal development. Mol Cell Neurosci 74:128–145. https://doi.org/10.1016/j.mcn.2016.05.002
PubMed
CAS
Article
Google Scholar
Pierzynowska K, Gaffke L, Hać A, Mantej J, Niedziałek N, Brokowska J, Węgrzyn G (2018) Correction of Huntington's disease phenotype by genistein-induced autophagy in the cellular model. NeuroMolecular Med 20:112-123. https://doi.org/10.1007/s12017-018-8482-1
Piotrowska E, Jakobkiewicz-Banecka J, Baranska S, Tylki-Szymanska A, Czartoryska B, Wegrzyn A, Wegrzyn G (2006) Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur J Hum Genet 14:846–852
PubMed
CAS
Article
Google Scholar
Porras G, Li Q, Bezard E (2012) Modeling Parkinson’s Disease in Primates: The MPTP Model. Cold Spring Harb Perspect Med 2:a009308. https://doi.org/10.1101/cshperspect.a009308
PubMed
PubMed Central
CAS
Article
Google Scholar
Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946. https://doi.org/10.1016/j.cell.2006.12.044
PubMed
CAS
Article
Google Scholar
Rao MV, Mohan PS, Peterhoff CM, Yang DS, Schmidt SD, Stavrides PH, Campbell J, Chen Y, Jiang Y, Paskevich PA, Cataldo AM, Haroutunian V, Nixon RA (2008) Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression. J Neurosci 28:12241–12254. https://doi.org/10.1523/JNEUROSCI.4119-08.2008
PubMed
PubMed Central
CAS
Article
Google Scholar
Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117
PubMed
CAS
Article
Google Scholar
Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595. https://doi.org/10.1038/ng1362
PubMed
CAS
Article
Google Scholar
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. https://doi.org/10.1152/physrev.00030.2009
PubMed
CAS
Article
Google Scholar
Reggiori F, Klionsky D (2005) Autophagosomes: biogenesis from scratch? Cell Biology 17:415–422. https://doi.org/10.1016/j.ceb.2005.06.007
Article
CAS
Google Scholar
Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC (2010) Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 285:11061–11067. https://doi.org/10.1074/jbc.R109.072181
PubMed
PubMed Central
CAS
Article
Google Scholar
Renvoize EB, Kent J, Klar HM (1987) Delusional infestation and dementia: a case report. Br J Psychiatry 150:403–405
PubMed
CAS
Article
Google Scholar
Ricci MS, Zong WX (2006) Chemotherapeutic Approaches for Targeting Cell Death Pathways. Oncologist 11:342–357
PubMed
PubMed Central
CAS
Article
Google Scholar
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5:ra42. https://doi.org/10.1126/scisignal.2002790
PubMed
PubMed Central
CAS
Article
Google Scholar
Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Perucho J, Cuervo AM, García de Yébenes J, Mena MA (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39:423–438. https://doi.org/10.1016/j.nbd.2010.05.014
PubMed
CAS
Article
Google Scholar
Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC (2010) Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 19:2144–2153. https://doi.org/10.1093/hmg/ddq093
PubMed
PubMed Central
CAS
Article
Google Scholar
Roy S, Debnath J (2010) Autophagy and Tumorigenesis. Semin Immunopathol 32:383–396. https://doi.org/10.1007/s00281-010-0213-0
PubMed
PubMed Central
Article
Google Scholar
Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S (1998) Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 141:625–636
PubMed
PubMed Central
CAS
Article
Google Scholar
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501. https://doi.org/10.1126/science.1157535
PubMed
PubMed Central
CAS
Article
Google Scholar
Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603. https://doi.org/10.1016/j.ceb.2005.09.009
PubMed
CAS
Article
Google Scholar
Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41:1103–1130. https://doi.org/10.1042/BST20130134
PubMed
CAS
Article
Google Scholar
Sarkar S, Rubinsztein DC (2008) Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J 275:4263–4270. https://doi.org/10.1111/j.1742-4658.2008.06562.x
PubMed
CAS
Article
Google Scholar
Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111. https://doi.org/10.1083/jcb.200504035
PubMed
PubMed Central
CAS
Article
Google Scholar
Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC (2008) A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet 17:170–178. https://doi.org/10.1093/hmg/ddm294
PubMed
CAS
Article
Google Scholar
Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR, Kroemer G, O'Kane CJ, Rubinsztein DC (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43:19–32. https://doi.org/10.1016/j.molcel.2011.04.029
PubMed
PubMed Central
CAS
Article
Google Scholar
Sato-Kusubata K, Yajima Y, Kawashima S (2000) Persistent activation of Gsa through limited proteolysis by calpain. Biochem J 347:733–740
PubMed
PubMed Central
CAS
Article
Google Scholar
Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135:2169–2177. https://doi.org/10.1093/brain/aws143
PubMed
PubMed Central
Article
Google Scholar
Scheuing L, Chiu CT, Liao HM, Linares GR, Chuang DM (2014) Preclinical and clinical investigations of mood stabilizers for Huntington's disease: what have we learned? Int J Biol Sci 10:1024–1038. https://doi.org/10.7150/ijbs.9898
PubMed
PubMed Central
CAS
Article
Google Scholar
Schiebler M, Brown K, Hegyi K, Newton SM, Renna M, Hepburn L, Klapholz C et al (2015) Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. EMBO Mol Med 7:127–139. https://doi.org/10.15252/emmm.201404137
PubMed
CAS
Article
Google Scholar
Schneider JS, Tinker JP, Decamp E (2010) Clondine improves attentional and memory components of delay response performance in a model of early parkinsonism. Behav Brain Res 211:236–239. https://doi.org/10.1016/j.bbr.2010.03.040
PubMed
PubMed Central
CAS
Article
Google Scholar
Schoch KM, von Reyn CR, Bian J, Telling GC, Meaney DF, Saatman KE (2013) Brain injury-induced proteolysis is reduced in a novel calpastatin-overexpressing transgenic mouse. J Neurochem 125:909–920. https://doi.org/10.1111/jnc.12144
PubMed
PubMed Central
CAS
Article
Google Scholar
Seo J, Jo SA, Hwang S, Byun CJ, Lee HJ, Cho DH, Kim D, Koh YH, Jo I (2013) Trichostatin A epigenetically increases calpastatin expression and inhibits calpain activity and calcium-induced SH-SY5Y neuronal cell toxicity. FEBS J 280:6691–6701. https://doi.org/10.1111/febs.12572
PubMed
CAS
Article
Google Scholar
Shaked GM, Engelstein R, Avraham I, Rosenmann H, Gabizon R (2002) Valproic acid treatment results in increased accumulation of prion proteins. Ann Neurol 52:416–420. https://doi.org/10.1002/ana.10298
PubMed
CAS
Article
Google Scholar
Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G (2004) Valproate decreases inositol biosynthesis. Biol Psychiatry 56:868–874. https://doi.org/10.1016/j.biopsych.2004.08.027
PubMed
CAS
Article
Google Scholar
Shariatpanahi M, Khodagholi F, Ashabi G, Aghazadeh Khasraghi A, Azimi L, Abdollahi M, Ghahremani MH, Ostad SN, Noorbakhsh F, Sharifzadeh M (2015) Ameliorating of memory impairment and apoptosis in amyloid β-injected rats via inhibition of nitric oxide synthase: possible participation of autophagy. Iran J Pharm Res 14:811–824
PubMed
PubMed Central
CAS
Google Scholar
Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6:91–99. https://doi.org/10.1016/j.ccr.2004.06.007
PubMed
CAS
Article
Google Scholar
Shen D, Coleman J, Chan E, Nicholson TP, Dai L, Sheppard PW, Patton WF (2011) Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys 60:173–185. https://doi.org/10.1007/s12013-010-9138-4
PubMed
CAS
Article
Google Scholar
Shimada K, Motoi Y, Ishiguro K, Kambe T, Matsumoto SE, Itaya M, Kunichika M, Mori H, Shinohara A, Chiba M, Mizuno Y, Ueno T, Hattori N (2012) Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: implications of autophagy promotion. Neurobiol Dis 46:101–108. https://doi.org/10.1016/j.nbd.2011.12.050
PubMed
CAS
Article
Google Scholar
Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995. https://doi.org/10.1126/science.1099993
PubMed
PubMed Central
CAS
Article
Google Scholar
Sirdharan S, Jain K, Basu A (2011) Regulation autophagy by kinases. Cancers (Basel) 3:2630–2654. https://doi.org/10.3390/cancers3022630
CAS
Article
Google Scholar
Sorial ME, El Sayed NSED (2017) Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer's disease mouse model: possible involvement of the cholinergic system. Naunyn Schmiedeberg's Arch Pharmacol 390:581–593. https://doi.org/10.1007/s00210-017-1357-4
CAS
Article
Google Scholar
Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5:e9979. https://doi.org/10.1371/journal.pone.0009979
PubMed
PubMed Central
CAS
Article
Google Scholar
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403. https://doi.org/10.1016/S1097-2765(04)00211-4
PubMed
CAS
Article
Google Scholar
Stokes HB (1975) Trifluoroperazine for the symptomatic treatment of chorea. Dis Nerv Syst 36:102–105
PubMed
CAS
Google Scholar
Sweetlove M (2012) Phase III CONCERT Trial of Latrepirdine. Pharmaceutical Medicine 26:113–115
Article
Google Scholar
Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906. https://doi.org/10.1038/35022595
Tanida I (2011) Autophagy basics. Microbiol Immunol 55:1–11. https://doi.org/10.1111/j.1348-0421.2010.00271.x
PubMed
CAS
Article
Google Scholar
Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91
PubMed
CAS
Article
Google Scholar
Tian Y, Bustos V, Flajolet M, Greengard P (2011) A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J 25:1934–1942. https://doi.org/10.1096/fj.10-175158
PubMed
PubMed Central
CAS
Article
Google Scholar
Tribouillard-Tanvier D, Béringue V, Desban N, Gug F, Bach S, Voisset C, Galons H, Laude H, Vilette D, Blondel M (2008) Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 3:e1981. https://doi.org/10.1371/journal.pone.0001981
PubMed
PubMed Central
CAS
Article
Google Scholar
Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120. https://doi.org/10.1126/science.1154822
PubMed
CAS
Article
Google Scholar
Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future. Molecules 15:878–916. https://doi.org/10.3390/molecules15020878
PubMed
CAS
Article
Google Scholar
Underwood B, Green-Thompson ZW, Pugh PJ, Lazic SE, Mason SL, Griffin J, Jones PS, Rowe JB, Rubinsztein DC, Barker RA (2017) An open-label study to assess the feasibility and tolerability of rilmenidine for the treatment of Huntington's disease. J Neurol 264:2457–2463. https://doi.org/10.1007/s00415-017-8647-0
PubMed
PubMed Central
CAS
Article
Google Scholar
Vellai T (2009) Autophagy genes and ageing. Cell Death Differ 16:94–102. https://doi.org/10.1038/cdd.2008.126
PubMed
CAS
Article
Google Scholar
Vidal RL, Matus S, Bargsted L, Hetz C (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35:583–591
PubMed
CAS
Article
Google Scholar
Vidoni C, Secomandi E, Castiglioni A, Melone MAB, Isidoro C (2017) Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int pii S0197-0186(17):30243–30247. https://doi.org/10.1016/j.neuint.2017.05.013
Article
CAS
Google Scholar
Vodicka P, Chase K, Iuliano M, Tousley A, Valentine DT, Sapp E, Kegel-Gleason KB, Sena-Esteves M, Aronin N, DiFiglia M (2016) Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis 5:249–260. https://doi.org/10.3233/JHD-160211
PubMed
PubMed Central
CAS
Article
Google Scholar
Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013. https://doi.org/10.1074/jbc.M300227200
PubMed
CAS
Article
Google Scholar
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688. https://doi.org/10.1016/j.molcel.2008.06.001
PubMed
PubMed Central
CAS
Article
Google Scholar
Williams RS, Bate C (2016) An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling. Neuropharmacology 101:566–575. https://doi.org/10.1016/j.neuropharm.2015.06.013
PubMed
CAS
Article
Google Scholar
Williams RSB, Bate C (2018) Valproic acid and its congener propylisopropylacetic acid reduced the amount of soluble amyloid-β oligomers released from 7PA2 cells. Neuropharmacology 128:54–62. https://doi.org/10.1016/j.neuropharm.2017.09.031
PubMed
CAS
Article
Google Scholar
Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295. https://doi.org/10.1038/417292a
PubMed
CAS
Article
Google Scholar
Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O'Kane CJ, Floto RA, Rubinsztein DC (2008) Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4:295–305. https://doi.org/10.1038/nchembio.79
PubMed
PubMed Central
CAS
Article
Google Scholar
Wong ASL, Cheung ZH, Ip NY (2011) Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta 1812:1490–1497. https://doi.org/10.1016/j.bbadis.2011.07.005
PubMed
CAS
Article
Google Scholar
Wu S, Zheng SD, Huang HL, Yan LC, Yin XF, Xu HN, Zhang KJ, Gui JH, Chu L, Liu XY (2013) Lithium down-regulates histone deacetylase 1 (HDAC1) and induces degradation of mutant huntingtin. J Biol Chem 288:35500–35510. https://doi.org/10.1074/jbc.M113.479865
PubMed
PubMed Central
CAS
Article
Google Scholar
Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131. https://doi.org/10.1016/j.ceb.2009.11.014
PubMed
CAS
Article
Google Scholar
Yang Y, Liang ZQ, Gu ZL, Qin ZH (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26:1421–1434. https://doi.org/10.1111/j.1745-7254.2005.00235.x
PubMed
CAS
Article
Google Scholar
Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J (2010) Prevalence of Diabetes among Men and Women in China. N Engl J Med 362:1090–1101. https://doi.org/10.1056/NEJMoa0908292
PubMed
CAS
Article
Google Scholar
Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552. https://doi.org/10.1038/sj.cdd.4401765
PubMed
PubMed Central
CAS
Article
Google Scholar
Zarzynska J, Motyl T (2008) Apoptosis and Autophagy in Involuting Bovine Mammary Gland. J Physiol Pharmacol 9:275–288
Google Scholar
Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, Yuan J (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci U S A 104:19023–19028. https://doi.org/10.1073/pnas.0709695104
PubMed
PubMed Central
Article
Google Scholar
Zhang X, Heng X, Li T, Li L, Yang D, Zhang X, Du Y, Doody RS, Le W (2011a) Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer's disease transgenic mouse model. J Alzheimers Dis 24:739–749. https://doi.org/10.3233/JAD-2011-101875
PubMed
CAS
Article
Google Scholar
Zhang X, Li L, Chen S, Yang D, Wang Y, Zhang X, Wang Z, Le W (2011b) Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 7:412–425
PubMed
CAS
Article
Google Scholar
Zhang L, Wang L, Wang R, Gao Y, Che H, Pan Y, Fu P (2017a) Evaluating the Effectiveness of GTM-1, Rapamycin, and Carbamazepine on Autophagy and Alzheimer Disease. Med Sci Monit 23:801–808. https://doi.org/10.12659/MSM.898679
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhang Y, Nguyen DT, Olzomer EM, Poon GP, Cole NJ, Puvanendran A, Phillips BR, Hesselson D (2017b) Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol 24:471–480.e4. https://doi.org/10.1016/j.chembiol.2017.03.005
PubMed
CAS
Article
Google Scholar
Zhang Y, Wu JY, Weng LH, Li XX, Yu LJ, Xu Y (2017c) Valproic acid protects against MPP+-mediated neurotoxicity in SH-SY5Y Cells through autophagy. Neurosci Lett 638:60–68. https://doi.org/10.1016/j.neulet.2016.12.017
PubMed
CAS
Article
Google Scholar
Zhao J, Zhi X, Pan L, Zhou P (2017) Trehalose Inhibits A53T Mutant α-Synuclein Overexpression and Neurotoxicity in Transduced PC12 Cells. Molecules 22. https://doi.org/10.3390/molecules22081293
Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X (2016) Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Front Aging Neurosci 8:303. https://doi.org/10.3389/fnagi.2016.00303
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg 14L and Rubicon 107 associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476. https://doi.org/10.1038/ncb1854
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhu L, Li L, Zhang Q, Yang X, Zou Z, Hao B, Marincola FM, Liu Z, Zhong Z, Wang M, Li X, Wang Q, Li K, Gao W, Yao K, Liu Q (2017) NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells. Cell Death Dis 3:17011. https://doi.org/10.1038/cddiscovery.2017.11
Article
Google Scholar
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+ -ATPase. Science 334:678–683. https://doi.org/10.1126/science.1207056
PubMed
PubMed Central
CAS
Article
Google Scholar