Skip to main content
Log in

Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The function of mitochondria as a regulator of myocyte calcium homeostasis has been extensively discussed. The aim of the present work was further clarification of the details of modulation of the functional activity of rat cardiac mitochondria by exogenous Ca2+ ions either in the absence or in the presence of the plant flavonoid naringin. Low free Ca2+ concentrations (40–250 nM) effectively inhibited the respiratory activity of heart mitochondria, remaining unaffected the efficacy of oxygen consumption. In the presence of high exogenous Ca2+ ion concentrations (Ca2+ free was 550 µM), we observed a dramatic increase in mitochondrial heterogeneity in size and electron density, which was related to calcium-induced opening of the mitochondrial permeability transition pores (MPTP) and membrane depolarization (Ca2+free ions were from 150 to 750 µM). Naringin partially prevented Ca2+-induced cardiac mitochondrial morphological transformations (200 µM) and dose-dependently inhibited the respiratory activity of mitochondria (10–75 µM) in the absence or in the presence of calcium ions. Our data suggest that naringin (75 µM) promoted membrane potential dissipation, diminishing the potential-dependent accumulation of calcium ions by mitochondria and inhibiting calcium-induced MPTP formation. The modulating effect of the flavonoid on Ca2+-induced mitochondria alterations may be attributed to the weak-acidic nature of the flavonoid and its protonophoric/ionophoric properties. Our results show that the sensitivity of rat heart mitochondria to Ca2+ ions was much lower in the case of MPTP opening and much higher in the case of respiration inhibition as compared to liver mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study have been included in this article.

Abbreviations

ADP:

adenosine 5′-diphosphate sodium salt

ANT:

adenine nucleotide translocase

BKA:

bongkrekate

BSA:

bovine serum albumin

CsA:

cyclosporine A

EDTA :

ethylenediaminetetraacetic acid disodium salt

EGTA :

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid tetrasodium salt

ER/SR:

endoplasmic/sarcoplasmic reticulum

FCCP:

carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

IFM:

interfibrillar mitochondria

Me:

median, MCU - mitochondrial Ca2+uniporter

MPTP:

mitochondrial permeability transition pores

PBS:

isotonic buffered saline

RCR:

respiratory control ratio

ROS:

reactive oxygen species

RuR:

Ruthenium red

SERCA:

sarcoplasmic reticulum Ca2+-ATPase

SSM:

subsarcolemmal mitochondria

References

  1. Taegtmeyer H (1994) Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol 19:59–113. https://doi.org/10.1016/0146-2806(94)90008-6

    Article  CAS  PubMed  Google Scholar 

  2. Bers DM (2001) Excitation-contraction coupling and cardiac contractile force. Springer, Dordrecht

    Book  Google Scholar 

  3. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. https://doi.org/10.1038/415198a

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Drake KJ, Sidorov VY, McGuinness OP, Wasserman DH, Wikswo JP (2012) Amino acids as metabolic substrates during cardiac ischemia. Exp Biol Med 237:1369–1378. https://doi.org/10.1258/ebm.2012.012025

    Article  CAS  Google Scholar 

  5. Yu F, McLean B, Badiwala M, Billia F (2022) Heart failure and drug therapies: a metabolic review. Int J Mol Sci 23:2960. https://doi.org/10.3390/ijms23062960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams GSB, Boyman L, Lederer WJ (2015) Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35–45. https://doi.org/10.1016/j.yjmcc.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2022) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. Cells 11:131. https://doi.org/10.3390/cells11010131

    Article  CAS  Google Scholar 

  8. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122. https://doi.org/10.1073/pnas.032427999

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL (2020) Calcium signaling in cardiomyocyte function. Cold Spring Harb Perspect Biol 12:a035428. https://doi.org/10.1101/cshperspect.a035428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garbincius JF, Elrod JW (2022) Mitochondrial calcium exchange in physiology and disease. Physiol Rev 102:893–992. https://doi.org/10.1152/physrev.00041.2020

    Article  CAS  PubMed  Google Scholar 

  11. El Hadi H, Vettor R, Rossato M (2019) Cardiomyocyte mitochondrial dysfunction in diabetes and its contribution in cardiac arrhythmogenesis. Mitochondrion 46:6–14. https://doi.org/10.1016/j.mito.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  12. Bowser DN, Minamikawa T, Nagley P, Williams DA (1998) Role of mitochondria in calcium regulation of spontaneously contracting cardiac muscle cells. Biophys J 75:2004–2014. https://doi.org/10.1016/S0006-3495(98)77642-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364. https://doi.org/10.1038/nature02246

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Granatiero V, Pacifici M, Raffaello A, De Stefani D, Rizzuto R (2019) Overexpression of mitochondrial calcium uniporter causes neuronal death. Oxid Med Cell Longev 2019:1681254. https://doi.org/10.1155/2019/1681254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797:907–912. https://doi.org/10.1016/j.bbabio.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  16. Knowlton AA, Chen L, Malik ZA (2014) Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol 63:196–206. https://doi.org/10.1097/01.fjc.0000432861.55968.a6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN (2018) The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 50:121–127. https://doi.org/10.1080/07853890.2017.1417631

    Article  CAS  PubMed  Google Scholar 

  18. Uryash A, Mijares A, Flores V, Adams JA, Lopez JR (2021) Effects of naringin on cardiomyocytes from a rodent model of type 2 diabetes. Front Pharmacol 12:719268. https://doi.org/10.3389/fphar.2021.719268)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rajadurai M, Stanely Mainzen Prince P (2007) Preventive effect of naringin on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats: a transmission electron microscopic study. J Biochem Mol Toxicol 21:354–631. https://doi.org/10.1002/jbt.20203

    Article  CAS  PubMed  Google Scholar 

  20. Zavodnik IB, Kovalenia TA, Veiko AG, Lapshina EA, Ilyich TV, Kravchuk RI, Zavodnik LB, Klimovich II (2022) Structural and functional changes in rat liver mitochondria under calcium ion loading in the absence and presence of flavonoids. Biomed Khim 68:237–249. https://doi.org/10.18097/PBMC20226804237

    Article  CAS  PubMed  Google Scholar 

  21. EGTA - Version 2.0 HTML/Javascript by PeteSmif. https://pcwww.liv.ac.uk/~petesmif/petesmif/software/_webware06/EGTA/EGTA.htm. Accessed 13 January 2023

  22. Guide for the Care and Use of Laboratory Animals. National Research Council US (2011) National Academies Press, Washington. https://nap.nationalacademies.org/read/12910/chapter/3. Accessed 13 Jan 2023

  23. Johnson D, Lardy HA (1967) Isolation of liver or kidney mitochondria. Meth Enzymol 10:94–101

    Article  CAS  Google Scholar 

  24. Gostimskaya I, Galkin A (2010) Preparation of highly coupled rat heart mitochondria. J Vis Exp 23:2202. https://doi.org/10.3791/2202

    Article  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  26. Millonig GA (1961) Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. J Appl Physics 32:1637–1643

    Google Scholar 

  27. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212. https://doi.org/10.1083/jcb.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191–197. https://doi.org/10.1016/0014-5793(76)80434-6

    Article  CAS  PubMed  Google Scholar 

  29. Moore AL, Bonner WD (1982) Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol 70:1271–1276. https://doi.org/10.1104/pp.70.5.1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TV, Zavodnik IB (2017) Calcium-induced mitochondrial permeability transitions: parameters of Ca2+ ion interactions with mitochondria and effects of oxidative agents. J Membr Biol 250:225–236. https://doi.org/10.1007/s00232-017-9953-2

    Article  CAS  PubMed  Google Scholar 

  31. Miyamae M, Camacho SA, Weiner MW, Figueredo VM (1996) Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol 271:H2145–H2153. https://doi.org/10.1152/ajpheart.1996.271.5.H2145

    Article  CAS  PubMed  Google Scholar 

  32. Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39. https://doi.org/10.1093/cvr/cvn184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 307:H1–H14. https://doi.org/10.1152/ajpheart.00747.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimada T, Horita K, Murakami M, Ogura R (1984) Morphological studies of different mitochondrial populations in monkey myocardial cells. Cell Tissue Res 238:577–582. https://doi.org/10.1007/BF00219874

    Article  CAS  PubMed  Google Scholar 

  35. Sandoval-Acuña C, Ferreira J, Speisky H (2014) Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 559:75–90. https://doi.org/10.1016/j.abb.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  36. Veiko AG, Sekowski S, Lapshina EA, Wilczewska AZ, Markiewicz KH, Zamaraeva M, Zhao Hu-cheng, Zavodnik IB (2020) Flavonoids modulate liposomal membrane structure, regulate mitochondrial membrane permeability and prevent erythrocyte oxidative damage. Biochim Biophys Acta 1862:183442. https://doi.org/10.1016/j.bbamem.2020.183442

    Article  CAS  Google Scholar 

  37. Cherrak SA, Mokhtari-Soulimane N, Berroukeche F, Bensenane B, Cherbonnel A, Merzouk H, Elhabiri M (2016) In vitro antioxidant versus metal ion chelating properties of flavonoids: a structure-activity investigation. PLoS ONE 11:e0165575. https://doi.org/10.1371/journal.pone.0165575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ortega R, García N (2009) The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J Bioenerg Biomembr 41:41–47. https://doi.org/10.1007/s10863-009-9198-6

    Article  CAS  PubMed  Google Scholar 

  39. De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 1787:1425–1432. https://doi.org/10.1016/j.bbabio.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  40. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen A-L (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787:1395–1401. https://doi.org/10.1016/j.bbabio.2009.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neginskaya MA, Morris SE, Pavlov EV (2022) Both ANT and ATPase are essential for mitochondrial permeability transition but not depolarization. iScience 25(11):105447. https://doi.org/10.1016/j.isci.2022.105447

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams GSB, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Natl Acad Sci USA 110:10479–10486. https://doi.org/10.1073/pnas.1300410110

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Bernardi P (2020) Mechanisms for Ca2+-dependent permeability transition in mitochondria. Proc Natl Acad Sci USA 117:2743–2744. https://doi.org/10.1073/pnas.1921035117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415. https://doi.org/10.1016/j.bbabio.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  45. Anmann T, Eimre M, Kuznetsov AV, Andrienko T, Kaambre T, Sikk P, Seppet E, Tiivel T, Vendelin M, Seppet E, Saks VA (2005) Calcium-induced contraction of sarcomeres changes the regulation of mitochondrial respiration in permeabilized cardiac cells. FEBS J 272:3145–3161. https://doi.org/10.1111/j.1742-4658.2005.04734.x

    Article  CAS  PubMed  Google Scholar 

  46. Fink BD, Bai F, Yu L, Sivitz WI (2017) Regulation of ATP production: dependence on calcium concentration and respiratory state. Am J Physiol Cell Physiol 313:C146–C153. https://doi.org/10.1152/ajpcell.00086.2017

    Article  PubMed  Google Scholar 

  47. Drahota Z, Milerová M, Endlicher R, Rychtrmoc D, Červinková Z, Ošt’ádal B (2012) Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiol Res 61:S165–S172. https://doi.org/10.33549/physiolres.932377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grant No М23KI – 14 for Joint scientific projects from the Belarusian Republican Foundation for Fundamental Research – National Scientific Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

T.A. Kavalenia: investigation, data curation, software, E.A. Lapshina: data curation, validation, software, writing-original draft preparation, T.V. Ilyich: investigation, software, visualization, Hu-Cheng Zhao: conceptualization, methodology, supervision, I.B. Zavodnik: conceptualization, writing-reviewing and editing.All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to I. B. Zavodnik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

All the authors meet the qualifications for authorship and had an opportunity to read and comment on the manuscript. All the authors support publication of the manuscript in Molecular and Cellular Biochemistry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 319.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavalenia, T.A., Lapshina, E.A., Ilyich, T.V. et al. Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04935-z

Keywords

Navigation