Skip to main content
Log in

Effect of Sodium Ions on Calcium-Loaded Rat Heart Mitochondria and Frog Myocardium

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The effect of calcium load on rat heart mitochondria [RHM(K+)], in which K+ ions in the matrix were partially replaced by Na+ ions [RHM(Na+)], was comparatively investigated. Calcium loading of RHM(K+) decreased their 2,4-dinitrophenol-uncoupled respiration and reduced the inner membrane potential (ΔΨmito). Swelling of these mitochondria increased in media with 25 mM potassium acetate or 125 mM NH4NO3. These effects of calcium loading were even greater in similar experiments with RHM(Na+). Inhibitors of the mitochondrial permeability transition pore (MPTP), ADP and cyclosporin A (CsA), abolished the above effects of Ca2+ completely in experiments with RHM(K+) and partially in experiments with RHM(Na+). A positive inotropic effect was observed with an increase in the extracellular concentration of Na+, however pre-incubation in a calcium-free solution led to a negative inotropic effect. Thus, partial replacement of K+ by Na+ in the matrix made rat heart mitochondria more sensitive to Ca2+ and increased the probability of MPTP opening in their inner membrane. Along with an elevation of cytoplasmic [Na+]i, this can further increase calcium overload of cardiomyocytes, making their damage during ischemia/reperfusion more likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

CsA:

cyclosporin А

[Ca2+]i :

intracellular calcium concentration

[Ca2+]m :

matrix calcium concentration

[Na+]i :

intracellular sodium concentration

ΔΨmito :

inner membrane potential

IMM:

inner mitochondrial membrane

DNP:

2,4-dinitrophenol

RHM:

rat heart mitochondria

MPTP:

mitochondrial permeability transition pore

REFERENCES

  1. Tanonaka K, Motegi K, Arino T, Marunouchi T, Takagi N, Takeo S (2012) Possible pathway of Na+ flux into mitochondria in ischemic heart. Biol Pharm Bull 35: 1661–1668. https://doi.org/10.1248/bpb.b12-00010

    Article  CAS  PubMed  Google Scholar 

  2. Gursahani HI, Schaefer S (2004) Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am J Physiol Heart Circ Physiol 287: H2659–H2665. https://doi.org/10.1152/ajpheart.00344.2004

    Article  CAS  PubMed  Google Scholar 

  3. Iwai T, Tanonaka K, Inoue R, Kasahara S, Motegi K, Nagaya S, Takeo S (2002) Sodium accumulation during ischemia induces mitochondrial damage in perfused rat hearts. Cardiovasc Res 55: 141–149. https://doi.org/10.1016/s0008-6363(02)00282-1

    Article  CAS  PubMed  Google Scholar 

  4. Saris NE, Eriksson KO (1995) Mitochondrial dysfunction in ischaemia-reperfusion. Acta Anaesthesiol Scand Suppl 107: 171–176. https://doi.org/10.1111/j.1399-6576.1995.tb04353.x

    Article  CAS  PubMed  Google Scholar 

  5. Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD (2006) The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol 290: H406–H415. https://doi.org/10.1152/ajpheart.00794.2005

    Article  CAS  PubMed  Google Scholar 

  6. Dos Santos P, Laclau MN, Boudina S, Garlid KD (2004) Alterations of the bioenergetics systems of the cell in acute and chronic myocardial ischemia. Mol Cell Biochem 256-257: 157–166. https://doi.org/10.1023/b:mcbi.0000009866.75225.e2

    Article  Google Scholar 

  7. Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts Possible involvement of H+–Na+ and Na+–Ca2+ exchange. Circ Res 65: 1045–1056. https://doi.org/10.1161/01.res.65.4.1045

    Article  CAS  PubMed  Google Scholar 

  8. Iwai T., Tanonaka K, Inoue R, Kasahara S, Kamo N, Takeo S (2002) Mitochondrial damage during ischemia determines post-ischemic contractile dysfunction in perfused rat heart. J Mol Cell Cardiol 34: 725–738. https://doi.org/10.1006/jmcc.2002.2002

    Article  CAS  PubMed  Google Scholar 

  9. Korotkov SM, Nesterov VP, Demina IN (2009) Effect of sodium load of the matrix on properties of isolated rat heart mitochondria. Dokl Biochem Biophys 424: 56–60. https://doi.org/10.1134/s1607672909010165

    Article  CAS  PubMed  Google Scholar 

  10. Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78: 129–141. https://doi.org/10.1016/j.yjmcc.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  11. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79: 1127–1155. https://doi.org/10.1152/physrev.1999.79.4.1127.

    Article  CAS  PubMed  Google Scholar 

  12. Barry WH (2006) Na"Fuzzy space": does it exist, and is it important in ischemic injury? J Cardiovasc Electrophysiol 17: S43–S46. https://doi.org/10.1111/j.1540-8167.2005.00396.x

    Article  PubMed  Google Scholar 

  13. Wei AC, Liu T, Cortassa S, Winslow RL, O’Rourke B (2011) Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine. A Biochim Biophys Acta 1813: 1373–1381. https://doi.org/10.1016/j.bbamcr.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  14. Perry CN, Huang C, Liu W, Magee N, Carreira RS, Gottlieb RA (2011) Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury. PLoS One 6: 1–11. https://doi.org/10.1371/journal.pone.0016288

    Article  CAS  Google Scholar 

  15. Pieske B, Houser SR (2003) Na+i handling in the failing human heart. Cardiovasc Res 57: 874–886. https://doi.org/10.1016/s0008-6363(02)00841-6

    Article  CAS  PubMed  Google Scholar 

  16. Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100: 315–322. https://doi.org/10.1254/jphs.cpj06001x

    Article  CAS  PubMed  Google Scholar 

  17. Flesch M, Erdmann E (2002) Na channel activators as positive inotropic agents for the treatment of chronic heart failure. Cardiovasc Drugs Ther 15: 379–386. https://doi.org/10.1023/a:1013329203750

    Article  Google Scholar 

  18. Coppini R, Ferrantini C, Mugelli A, Poggesi C, Cerbai E (2018) Altered Ca2+ and Na+ Homeostasis in Human Hypertrophic Cardiomyopathy: Implications for Arrhythmogenesis. Front Physiol 16: 1391. https://doi.org/10.3389/fphys.2018.01391

    Article  Google Scholar 

  19. Goldhaber JI, Philipson KD (2013) Cardiac Sodium-Calcium Exchange and Efficient Excitation-Contraction Coupling: Implications for Heart Disease. Adv Exp Med Biol 961: 355–364. https://doi.org/10.1007/978-1-4614-4756-6_30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Korotkov SM, Sobol KV, Shemarova IV, Furaev VV, Novozhilov AV, Nesterov VP (2019) Effects of Nd3+ on calcium-dependent processes in isolated rat heart mitochondria and frog heart muscle. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology 13: 161–167. https://doi.org/10.7868/S0233475518030040

  21. Panov AV (2015) Practical mitochondriology. Novosibirsk https://doi.org/10.13140/2.1.1599.3127

    Book  Google Scholar 

  22. Sobol CV, Korotkov SM, Nesterov VP (2014) Inotropic effect of a new probiotic product on myocardial contractility Comparison with diazoxide. Biophysics 59: 780–785. https://doi.org/10.1134/S000635091405025X

    Article  CAS  Google Scholar 

  23. Korotkov SM, Emel’yanova LV, Brailovskaya IV, Nesterov VP (2012) Effects of pinacidil and calcium on isolated rat heart mitochondria. Dokl Biochem Biophys 443: 113–117. https://doi.org/10.1134/S1607672912020147

    Article  CAS  PubMed  Google Scholar 

  24. Biasutto L, Azzolini M, Szabò I, Zoratti M (2016) The mitochondrial permeability transition pore in AD 2016: An update Biochim. Biophys Acta 1863: 2515–2530. https://doi.org/10.1016/j.bbamcr.2016.02.012

    Article  CAS  Google Scholar 

  25. Mitchell P, Moyle J (1969) Translocation of some anions cations and acids in rat liver mitochondria. Eur J Biochem 9: 149–155. https://doi.org/10.1111/j.1432-1033.1969.tb00588.x

    Article  CAS  PubMed  Google Scholar 

  26. Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K+ cycle. Biochim Biophys Acta 1606: 23–41. https://doi.org/10.1016/s0005-2728(03)00108-7

    Article  CAS  PubMed  Google Scholar 

  27. Brierley GP (1976) The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem 10(1): 41–63. https://doi.org/10.1007/BF01731680

    Article  CAS  PubMed  Google Scholar 

  28. Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters J (2002) Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol 62: 22–29. https://doi.org/10.1124/mol.62.1.22

    Article  CAS  PubMed  Google Scholar 

  29. Korotkov S, Konovalova S, Emelyanova L, Brailovskaya I (2014)Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J Inorg Biochem 141: 1–9. https://doi.org/10.1016/j.jinorgbio.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  30. Korotkov SM, Nesterov VP, Brailovskaya IV, Furaev VV, Novozhilov AV (2013) Tl+ induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria. J Bioenerg Biomembr 45: 531–539. https://doi.org/10.1007/s10863-013-9526-8

    Article  CAS  PubMed  Google Scholar 

  31. Saotome M, Katoh H, Satoh H, Nagasaka S, Yoshihara S, Terada H, Hayashi H (2005) Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 288: H1820–1828. https://doi.org/10.1152/ajpheart.00589.2004

    Article  CAS  PubMed  Google Scholar 

  32. Vajda S, Mándi M, Konràd C, Kiss G, Ambrus A, Adam-Vizi V, Chinopoulos C (2009) A re-evaluation of the role of matrix acidification in uncoupler-induced Ca2+ release from mitochondria. FEBS J 276: 2713–2724. https://doi.org/10.1111/j.1742-4658.2009.06995.x

    Article  CAS  PubMed  Google Scholar 

  33. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28: 285–296. https://doi.org/10.1054/ceca.2000.0168

    Article  CAS  PubMed  Google Scholar 

  34. Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore Switching from low- to high-conductance state. Biochim Biophys Acta 1366: 33–50. https://doi.org/10.1016/s0005-2728(98)00119-4

    Article  CAS  PubMed  Google Scholar 

  35. Gómez-Puyou A, Sandoval F, Chávez E, Tuena M (1970) On the role of K+ on oxidative phosphorylation. J Biol Chem 245: 5239–5247.

    Article  Google Scholar 

  36. Glazunov VV, Korotkov SM (1997) Respiration and swelling of isolated rat liver mitochondria, modified by replacing potassium for sodium in their matrix. Dokl Akad Nauk 356: 551–554 (In Russ).

    CAS  PubMed  Google Scholar 

  37. Gómez-Puyou A, Tuena de Gómez-Puyou M (1977) Monovalent cations in mitochondrial oxidative phosphorylation. J Bioenerg Biomembr 9: 91–102. https://doi.org/10.1007/BF00745045

    Article  PubMed  Google Scholar 

  38. Harris EJ, Cooper MB (1981) Calcium and magnesium ion losses in response to stimulants of efflux applied to heart, liver and kidney mitochondria. Biochem Biophys Res Commun 103: 788–796. https://doi.org/10.1016/0006-291x(81)90518-0

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.V. Brailovskaya for her assistance in isolating mitochondria and polarographic measuring mitochondrial oxygen uptake rates, L.V. Emelyanova for his help in determining the mitochondrial inner membrane potential of rat heart mitochondria, and A.I. Burdygin for creating a program for recording and processing of myocardial contraction data. Studies on determining the mitochondrial inner membrane potential were carried out at the Center for Collective Use at the Sechenov Institute of Evolutionary Physiology and Biochemistry.

Funding

This work was supported by the federal budget the Russian Federation allotted to the Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences for the implementation of the governmental assignment АААА-А18-118012290142-9.

Author information

Authors and Affiliations

Authors

Contributions

S.M.K.—conceptualization, experimental design, studies of mitochondrial swelling, data collection and processing, writing and editing a manuscript; K.V.S.—studies of contractile characteristics of frog heart muscle preparations, as well as the involvement, together with V.P.N., I.V.Sh. and S.M.K., in data discussion.

Corresponding author

Correspondence to S. M. Korotkov.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 6, pp. 484–493https://doi.org/10.31857/S0044452921060073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkov, S.M., Sobol, K.V., Shemarova, I.V. et al. Effect of Sodium Ions on Calcium-Loaded Rat Heart Mitochondria and Frog Myocardium. J Evol Biochem Phys 57, 1241–1250 (2021). https://doi.org/10.1134/S0022093021060041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021060041

Keywords:

Navigation