Skip to main content

Defects in Mitochondrial Oxidative Phosphorylation in Hearts Subjected to Ischemia-Reperfusion Injury

  • Chapter
  • First Online:
Cardiac Energy Metabolism in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

  • 1116 Accesses

Abstract

Although several studies have shown impairment of mitochondrial respiratory and oxidative phosphorylation activities in the ischemic-reperfused (I/R) hearts, the mechanisms of these alterations are not fully understood. Recently, we have shown that the I/R-induced changes in mitochondrial function were attenuated by an oxyradical scavenging system or antioxidants such as N-acetyl-l-cysteine and N-(2-mercaptopropionyl)-glycine. On the other hand, perfusion of hearts with an oxyradical generating system or H2O2, a well known oxidant, simulated the I/R induced mitochondrial dysfunction. Furthermore, intracellular Ca2+-overload induced by perfusing the Ca2+-depleted hearts with Ca2+-containing medium produced changes in mitochondrial respiratory and oxidative phosphorylation activities similar to those seen due to I/R injury. Mitochondrial dysfunction was also observed upon incubating these organelles with high concentrations of Ca2+. These observations support the view that mitochondrial dysfunction with respect to energy production due to I/R injury, occurs as a result of oxidative stress and intracellular Ca2+-overload. It is also evident that mitochondrial alterations in the I/R hearts lead to the depletion of high-energy phosphate stores and thus may play a critical role in the development of cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williamson JR (1979) Mitochondrial function in the heart. Annu Rev Physiol 41:485–506

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330–16336

    CAS  PubMed  Google Scholar 

  3. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38:1278–1295

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari R, Pedersini P, Bongrazio M et al (1993) Mitochondrial energy production and cation control in myocardial ischaemia and reperfusion. Basic Res Cardiol 88:495–512

    Article  CAS  PubMed  Google Scholar 

  5. Duan J, Karmazyn M (1989) Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion. Can J Physiol Pharmacol 67:704–709

    CAS  PubMed  Google Scholar 

  6. Ferrari R, di Lisa F, Raddino R, Visioli O (1982) The effects of ruthenium red on mitochondrial function during post-ischaemic reperfusion. J Mol Cell Cardiol 14:737–740

    Article  CAS  PubMed  Google Scholar 

  7. Dhalla NS, Yates JC, Walz DA, McDonald VA, Olson RE (1972) Correlation between changes in the endogenous energy stores and myocardial function due to hypoxia in the isolated perfused rat heart. Can J Physiol Pharmacol 50:333–345

    CAS  PubMed  Google Scholar 

  8. Dhalla NS, Matoushek RF, Sun CN, Olson RE (1973) Metabolic, ultrastructural, and mechanical changes in the isolated rat heart perfused with aerobic medium in the absence or presence of glucose. Can J Physiol Pharmacol 51:590–603

    CAS  PubMed  Google Scholar 

  9. Sharma GP, Varley KG, Kim SW et al (1975) Alterations in energy metabolism and ultrastructure upon reperfusion of the ischemic myocardium after coronary occlusion. Am J Cardiol 36:234–243

    Article  CAS  Google Scholar 

  10. Temsah RM, Kumamoto H, Takeda N, Dhalla NS (2001) Sarpogrelate diminishes changes in energy stores and ultrastructure of the ischemic-reperfused rat heart. Can J Physiol Pharmacol 79:761–767

    CAS  PubMed  Google Scholar 

  11. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089

    Article  CAS  PubMed  Google Scholar 

  12. Ferrari R (1996) The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 28(Suppl 1):S1–S10

    CAS  PubMed  Google Scholar 

  13. Long X, Goldenthal MJ, Wu GM, Marin-Garcia J (2004) Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocyte response to H2O2. J Mol Cell Cardiol 37:63–70

    Article  CAS  PubMed  Google Scholar 

  14. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  CAS  PubMed  Google Scholar 

  15. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular disease. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  16. Geshi E, Konno N, Yanagishita T, Katagiri T (1988) Impairment of mitochondrial respiratory activity in the early ischemic myocardium with special reference to electron transport system. Jpn Circ J 52:535–542

    Article  CAS  PubMed  Google Scholar 

  17. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  CAS  PubMed  Google Scholar 

  19. Peart JN, Gross GJ (2002) Sarcolemmal and mitochondrial KATP channels and myocardial ischemic preconditioning. J Cell Mol Med 6:453–464

    Article  CAS  PubMed  Google Scholar 

  20. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634

    CAS  PubMed  Google Scholar 

  21. Borutaite V, Mildaziene V, Brown GC, Brand MD (1995) Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochim Biophys Acta 1272:154–158

    Article  PubMed  Google Scholar 

  22. Bosetti F, Baracca A, Lenaz G, Solaini G (2004) Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. FEBS Lett 563:161–164

    Article  CAS  PubMed  Google Scholar 

  23. Demaison L, Moreau D, Martine L, Chaudron I, Grynberg A (1996) Myocardial ischemia and in vitro mitochondrial metabolic efficiency. Mol Cell Biochem 158:161–169

    Article  CAS  PubMed  Google Scholar 

  24. Jennings RB, Reimer KA (1991) The cell biology of acute myocardial ischemia. Annu Rev Med 42:225–246

    Article  CAS  PubMed  Google Scholar 

  25. Kane JJ, Murphy ML, Bissett JK et al (1975) Mitochondrial function, oxygen extraction, epicardial S-T segment changes and tritiated digoxin distribution after reperfusion of ischemic myocardium. Am J Cardiol 36:218–224

    Article  CAS  PubMed  Google Scholar 

  26. Kay L, Saks VA, Rossi A (1997) Early alteration of the control of mitochondrial function in myocardial ischemia. J Mol Cell Cardiol 29:3399–3411

    Article  CAS  PubMed  Google Scholar 

  27. Makazan Z, Saini HK, Dhalla NS (2007) Role of oxidative stress in alteration of mitochondrial function in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol 292:H1986–H1994

    CAS  PubMed  Google Scholar 

  28. Makazan Z, Saini-Chohan HK, Dhalla NS (2009) Mitochondrial oxidative phosphorylation in hearts subjected to Ca2+-depletion and Ca2+-repletion. Can J Physiol Pharmacol 87:789–797

    CAS  PubMed  Google Scholar 

  29. Schaffer SW, Suleiman MS (eds) (2007) Mitochondria: The Dynamic Organelle. Springer Science + Business Media, New York, pp 3–347

    Google Scholar 

  30. Dhalla NS, Saini HK, Tappia PS et al (2007) Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med (Hagerstown) 8:238–250

    Article  Google Scholar 

  31. Temsah RM, Netticadan T, Chapman D et al (1999) Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol Heart Circ Physiol 277:H584–H594

    CAS  Google Scholar 

  32. Ostadal P, Elmoselhi AB, Zdobnicka I et al (2004) Role of oxidative stress in ischemia-reperfusion-induced changes in Na+-K+ ATPase isoform expression in rat heart. Antioxid Redox Signal 6:914–923

    Article  CAS  PubMed  Google Scholar 

  33. Zucchi R, Ronca-Testoni S, Yu G et al (1994) Effect of ischemia and reperfusion on cardiac ryanodine receptors - sarcoplasmic reticulum Ca2+ channels. Circ Res 74:271–280

    Article  CAS  PubMed  Google Scholar 

  34. Maddika S, Elimban V, Chapman D, Dhalla NS (2009) Role of oxidative stress in ischemia-reperfusion-induced alterations in myofibrillar ATPase activities and gene expression in the heart. Can J Physiol Pharmacol 87:120–129

    CAS  PubMed  Google Scholar 

  35. Weishaar R, Tschurtschenthaler GV, Ashikawa K, Bing RJ (1979) The relationship of regional coronary blood flow to mitochondrial function during reperfusion of the ischemic myocardium. Cardiology 64:350–364

    Article  CAS  PubMed  Google Scholar 

  36. Bolli R, Jeroudi MO, Patel BS et al (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622

    Article  CAS  PubMed  Google Scholar 

  37. Ceconi C, Curello S, Cargnoni A et al (1988) The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N-acetyl cysteine. J Mol Cell Cardiol 20:5–13

    Article  CAS  PubMed  Google Scholar 

  38. Kotaka K, Miyazaki Y, Ogawa K et al (1982) Reversal of ischemia-induced mitochondrial dysfunction after coronary reperfusion. J Mol Cell Cardiol 14:223–231

    Article  CAS  PubMed  Google Scholar 

  39. Panov AV, Scaduto RC Jr (1995) Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Arch Biochem Biophys 316:815–820

    Article  CAS  PubMed  Google Scholar 

  40. Paradies G, Petrosillo G, Pistolese M et al (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59

    Article  CAS  PubMed  Google Scholar 

  41. Paradies G, Petrosillo G, Pistolese M et al (1999) Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med 27:42–50

    Article  CAS  PubMed  Google Scholar 

  42. Tanonaka K, Iwai T, Motegi K, Takeo S (2003) Effects of N-(2-mercaptopropionyl)-glycine on mitochondrial function in ischemic-reperfused heart. Cardiovasc Res 57:416–425

    Article  CAS  PubMed  Google Scholar 

  43. Turrens JF, Beconi M, Barilla J, Chavez UB, McCord JM (1991) Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic Res Commun 12–13:681–689

    Article  PubMed  Google Scholar 

  44. Piper HM, Meuter K, Schafer C (2003) Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg 75:S644–S648

    Article  PubMed  Google Scholar 

  45. Saini HK, Dhalla NS (2005) Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 288:H2260–H2270

    CAS  PubMed  Google Scholar 

  46. Saini HK, Elimban V, Dhalla NS (2005) Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 289:H614–H623

    CAS  PubMed  Google Scholar 

  47. Abe K, Hayashi N, Terada H (1999) Effect of endogenous nitric oxide on energy metabolism of rat heart mitochondria during ischemia and reperfusion. Free Radic Biol Med 26:379–387

    Article  CAS  PubMed  Google Scholar 

  48. Ban K, Handa S, Chapman RA (1999) On the mechanism of the failure of mitochondrial function in isolated guinea-pig myocytes subjected to a Ca2+ overload. Cardiovasc Res 44:556–567

    Article  CAS  PubMed  Google Scholar 

  49. Venditti P, Masullo P, Di Meo S (2001) Effects of myocardial ischemia and reperfusion on mitochondrial function and susceptibility to oxidative stress. Cell Mol Life Sci 58:1528–1537

    Article  CAS  PubMed  Google Scholar 

  50. Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597

    Article  CAS  PubMed  Google Scholar 

  51. Kukreja RC, Weaver AB, Hess ML (1990) Sarcolemmal Na+-K+-ATPase: inactivation by neutrophil-derived free radicals and oxidants. Am J Physiol Heart Circ Physiol 259:H1330–H1336

    CAS  Google Scholar 

  52. Shlafer M, Kane PF, Kirsh MM (1982) Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg 83:830–839

    CAS  PubMed  Google Scholar 

  53. Tani M (1990) Effects of anti-free radical agents on Na+, Ca2+, and function in reperfused rat hearts. Am J Physiol Heart Circ Physiol 259:H137–H143

    CAS  Google Scholar 

  54. Lesnefsky EJ, Slabe TJ, Stoll MS, Minkler PE, Hoppel CL (2001) Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 280:H2770–H2778

    CAS  PubMed  Google Scholar 

  55. Müller AL, Hryshko LV, Dhalla NS (2013) Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 164:39–47

    Article  PubMed  Google Scholar 

  56. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The infrastructure support for this project was provided by the St. Boniface Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elimban, V., Tappia, P.S., Dhalla, N.S. (2014). Defects in Mitochondrial Oxidative Phosphorylation in Hearts Subjected to Ischemia-Reperfusion Injury. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_12

Download citation

Publish with us

Policies and ethics