Skip to main content
Log in

Depressed HCN4 function in the type 2 diabetic sinoatrial node

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetic patients often have impaired heart rate (HR) control. HR is regulated both intrinsically within the sinoatrial node (SAN) and via neuronal input. Previously, we found lower ex vivo HR in type 2 diabetic rat hearts, suggesting impaired HR generation within the SAN. The major driver of pacemaking within the SAN is the activity of hyperpolarisation-activated cyclic nucleotide-gated 4 (HCN(4)) channels. This study aimed to investigate whether the lower intrinsic HR in the type 2 diabetic heart is due to changes in HCN4 function, protein expression and/ or distribution. The intrinsic HR response to HCN4 blockade was determined in isolated Langendorff-perfused hearts of Zucker type 2 Diabetic Fatty (ZDF) rats (DM) and their non-diabetic ZDF littermates (nDM). HCN4 protein expression and membrane localisation were determined using western blot and immunofluorescence, respectively. We found that the intrinsic HR was lower in DM compared to nDM hearts. The change in intrinsic HR in response to HCN4 blockade with ivabradine was diminished in DM hearts, which normalised the intrinsic HR between the groups. HCN4 protein expression was decreased in the SAN of DM compared to nDM controls with no change in the fraction of HCN4 localised to the membrane of SAN cardiomyocytes. The lower intrinsic HR in DM is likely due to decreased HCN4 expression and depressed HCN4 function. Our study provides a novel understanding into the intrinsic mechanisms underlying altered HR control in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

cAMP:

Cyclic adenosine monophosphate

DM:

Type 2 diabetic ZDF

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HCN4:

Hyperpolarisation-activated cyclic nucleotide-gated 4

HR:

Heart rate

If :

Funny current

LV:

Left ventricle

nDM:

Non-diabetic ZDF

RA:

Right atria

SAN:

Sinoatrial node

WGA:

Wheat germ agglutinin

ZDF:

Zucker Diabetic Fatty

References

  1. Einarson TR, Acs A, Ludwig C, Panton UH (2018) Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 17(1):83

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bloomgarden ZT (2003) Cardiovascular disease and diabetes. Diabetes Care 26(1):230–237

    Article  PubMed  Google Scholar 

  3. Podlaha R, Falk A (1992) The prevalence of diabetes mellitus and other risk factors of atherosclerosis in bradycardia requiring pacemaker treatment. Horm Metab Res Suppl 26:84–87

    CAS  PubMed  Google Scholar 

  4. Wasada T, Katsumori K, Hasumi S, Kasanuki H, Arii H, Saeki A et al (1995) Association of sick sinus syndrome with hyperinsulinemia and insulin resistance in patients with non-insulin-dependent diabetes mellitus: report of four cases. Intern Med 34(12):1174–1177

    Article  CAS  PubMed  Google Scholar 

  5. Movahed MR (2007) Diabetes as a risk factor for cardiac conduction defects: a review. Diabetes Obes Metab 9(3):276–281

    Article  PubMed  Google Scholar 

  6. Monfredi O, Maltsev VA, Lakatta EG (2013) Modern concepts concerning the origin of the heartbeat. Physiology (Bethesda) 28(2):74–92

    CAS  PubMed  Google Scholar 

  7. Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman J et al (2014) Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 63(5):1738–1747

    Article  CAS  PubMed  Google Scholar 

  8. Grisanti LA (2018) Diabetes and arrhythmias: pathophysiology mechanisms and therapeutic outcomes. Front Physiol 9:1669

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hasslacher C, Wahl P (1977) Diabetes prevalence in patients with bradycardiac arrhythmias. Acta Diabetol Lat 14(5–6):229–234

    Article  CAS  PubMed  Google Scholar 

  10. Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M (2022) Structural and electrical remodeling of the sinoatrial node in diabetes: new dimensions and perspectives. Front Endocrinol (Lausanne) 13:946313

    Article  PubMed  Google Scholar 

  11. Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115(3):387–397

    Article  PubMed  Google Scholar 

  12. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Doring A et al (2008) Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA augsburg cohort study. Diabetes Care 31(3):556–561

    Article  PubMed  Google Scholar 

  13. Stettler C, Bearth A, Allemann S, Zwahlen M, Zanchin L, Deplazes M et al (2007) QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up. Diabetologia 50(1):186–194

    Article  CAS  PubMed  Google Scholar 

  14. Grimm W, Langenfeld H, Maisch B, Kochsiek K (1990) Symptoms, cardiovascular risk profile and spontaneous ECG in paced patients: a five-year follow-up study. Pacing Clin Electrophysiol 13(12 Pt 2):2086–2090

    Article  CAS  PubMed  Google Scholar 

  15. Bussey CT, de Leeuw AE, Lamberts RR (2014) Increased haemodynamic adrenergic load with isoflurane anaesthesia in type 2 diabetic and obese rats in vivo. Cardiovasc Diabetol 13:161

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bussey CT, Lamberts RR (2017) Effect of type 2 diabetes, surgical incision, and volatile anesthesia on hemodynamics in the rat. Physiol Rep 5(14):e13352

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cook RF, Bussey CT, Mellor KM, Cragg PA, Lamberts RR (2017) beta1 -Adrenoceptor, but not beta2 -adrenoceptor, subtype regulates heart rate in type 2 diabetic rats in vivo. Exp Physiol 102(8):911–923

    Article  CAS  PubMed  Google Scholar 

  18. Thaung HP, Baldi JC, Wang HY, Hughes G, Cook RF, Bussey CT et al (2015) Increased Efferent cardiac sympathetic nerve activity and defective intrinsic heart rate regulation in Type 2 diabetes. Diabetes 64(8):2944–2956

    Article  CAS  PubMed  Google Scholar 

  19. Cook RF, Bussey CT, Fomison-Nurse IC, Hughes G, Bahn A, Cragg PA et al (2019) beta2 -adrenoceptors indirectly support impaired beta1 -adrenoceptor responsiveness in the isolated type 2 diabetic rat heart. Exp Physiol 104(6):808–818

    Article  CAS  PubMed  Google Scholar 

  20. Soltysinska E, Speerschneider T, Winther SV, Thomsen MB (2014) Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice. Cardiovasc Diabetol 13:122

    Article  PubMed  PubMed Central  Google Scholar 

  21. Howarth FC, Qureshi MA, Jayaprakash P, Parekh K, Oz M, Dobrzynski H et al (2018) The pattern of mRNA expression is changed in sinoatrial node from Goto-Kakizaki Type 2 diabetic rat heart. J Diabetes Res 2018:8454078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G, Gnecchi-Rusconi T et al (2011) Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc Natl Acad Sci U S A 108(4):1705–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mesirca P, Alig J, Torrente AG, Muller JC, Marger L, Rollin A et al (2014) Cardiac arrhythmia induced by genetic silencing of ‘funny’ (f) channels is rescued by GIRK4 inactivation. Nat Commun 5:4664

    Article  CAS  PubMed  Google Scholar 

  24. Kozasa Y, Nakashima N, Ito M, Ishikawa T, Kimoto H, Ushijima K et al (2018) HCN4 pacemaker channels attenuate the parasympathetic response and stabilize the spontaneous firing of the sinoatrial node. J Physiol 596(5):809–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herrmann S, Stieber J, Stockl G, Hofmann F, Ludwig A (2007) HCN4 provides a ‘depolarization reserve’ and is not required for heart rate acceleration in mice. EMBO J 26(21):4423–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoesl E, Stieber J, Herrmann S, Feil S, Tybl E, Hofmann F et al (2008) Tamoxifen-inducible gene deletion in the cardiac conduction system. J Mol Cell Cardiol 45(1):62–69

    Article  CAS  PubMed  Google Scholar 

  27. D’Souza A, Bucchi A, Johnsen AB, Logantha SJ, Monfredi O, Yanni J et al (2014) Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun 5:3775

    Article  CAS  PubMed  Google Scholar 

  28. Dobrzynski H, Boyett MR, Anderson RH (2007) New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115(14):1921–1932

    Article  PubMed  Google Scholar 

  29. Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE (2003) Ionic remodeling of sinoatrial node cells by heart failure. Circulation 108(6):760–766

    Article  PubMed  Google Scholar 

  30. Huang X, Yang P, Yang Z, Zhang H, Ma A (2016) Age-associated expression of HCN channel isoforms in rat sinoatrial node. Exp Biol Med (Maywood) 241(3):331–339

    Article  CAS  PubMed  Google Scholar 

  31. Mesirca P, Torrente AG, Mangoni ME (2014) T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch 466(4):791–799

    Article  CAS  PubMed  Google Scholar 

  32. Huang X, Zhong N, Zhang H, Ma A, Yuan Z, Guo N (2017) Reduced expression of HCN channels in the sinoatrial node of streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 95(5):586–594

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Wang Y, Yanni J, Qureshi MA, Logantha S, Kassab S et al (2019) Electrical conduction system remodeling in streptozotocin-induced diabetes mellitus rat heart. Front Physiol 10:826

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aromolaran AS, Boutjdir M (2017) Cardiac Ion channel regulation in obesity and the metabolic syndrome: relevance to long QT syndrome and atrial fibrillation. Front Physiol 8:431

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ballou LM, Lin RZ, Cohen IS (2015) Control of cardiac repolarization by phosphoinositide 3-kinase signaling to ion channels. Circ Res 116(1):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Topp BG, Atkinson LL, Finegood DT (2007) Dynamics of insulin sensitivity, -cell function, and -cell mass during the development of diabetes in fa/fa rats. Am J Physiol Endocrinol Metab 293(6):E1730–E1735

    Article  CAS  PubMed  Google Scholar 

  37. Stieber J, Wieland K, Stockl G, Ludwig A, Hofmann F (2006) Bradycardic and proarrhythmic properties of sinus node inhibitors. Mol Pharmacol 69(4):1328–1337

    Article  CAS  PubMed  Google Scholar 

  38. Chakraborty AD, Gonano LA, Munro ML, Smith LJ, Thekkedam C, Staudacher V et al (2018) Activation of RyR2 by class I kinase inhibitors. Br J Pharmacol 176(6):773–786

    Article  Google Scholar 

  39. Logantha SJ, Stokke MK, Atkinson AJ, Kharche SR, Parveen S, Saeed Y et al (2016) Ca(2+)-Clock-Dependent pacemaking in the sinus node is impaired in mice with a cardiac specific reduction in SERCA2 abundance. Front Physiol 7:197

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jayasinghe I, Crossman D, Soeller C, Cannell M (2012) Comparison of the organization of T-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium. Clin Exp Pharmacol Physiol 39(5):469–476

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto M, Dobrzynski H, Tellez J, Niwa R, Billeter R, Honjo H et al (2006) Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. Cardiovasc Res 72(2):271–281

    Article  CAS  PubMed  Google Scholar 

  42. D’Souza A, Pearman CM, Wang Y, Nakao S, Logantha S, Cox C et al (2017) Targeting miR-423-5p reverses exercise training-induced HCN4 Channel remodeling and sinus bradycardia. Circ Res 121(9):1058–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barbuti A, Terragni B, Brioschi C, DiFrancesco D (2007) Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. J Mol Cell Cardiol 42(1):71–78

    Article  CAS  PubMed  Google Scholar 

  44. Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP (2017) Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 16(1):155

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Halina Dobrzynski (University of Manchester, UK) and Dr Sunil Jit Logantha (University of Liverpool, UK) for training SP to identify and isolate the sinoatrial node.

Funding

This work was supported by Heart Foundation of New Zealand Grant [#1836] and Health Research Council of New Zealand Grant [18/232] to PPJ, a Heart Foundation of New Zealand Research Fellowship to MLM [#1784] and CTB [#1783], and Project Grant [#1771] to CTB.

Author information

Authors and Affiliations

Authors

Contributions

PPJ and RRL conceived the project, secured funding, designed the experiments, reviewed the data and reviewed and edited the manuscript. SP performed the echocardiography, Langendorff and immunofluorescent experiments, collected and analysed these data and drafted the manuscript. PHSC assisted with the Langendorff and immunofluorescent experiments. CTB, LPIW and RAS performed the western blotting, analysis and interpretation. MLM oversaw the confocal imaging and image analysis and interpretation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Peter P. Jones.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All research was approved by the University of Otago Ethics Committee and complied with the New Zealand Animal Welfare Act 1999 and University of Otago guidelines.

Consent for publications

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 139 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, S., Cheah, P.H.S., Worthington, L.P.I. et al. Depressed HCN4 function in the type 2 diabetic sinoatrial node. Mol Cell Biochem 478, 1825–1833 (2023). https://doi.org/10.1007/s11010-022-04635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04635-6

Keywords

Navigation