Skip to main content

Advertisement

Log in

Association between diabetes and cancer. Current mechanistic insights into the association and future challenges

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

A data availability statement is mandatory for publication in this journal. Please confirm that this statement is accurate, or provide an alternative.

References

  1. Wang M, Yang Y, Liao Z (2020) Diabetes and cancer: epidemiological and biological links. World J Diabetes 11:227–238. https://doi.org/10.4239/wjd.v11.i6.227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bjornsdottir HH, Rawshani A, Rawshani A, Franzén S, Svensson AM, Sattar N, Gudbjörnsdottir S (2020) A national observation study of cancer incidence and mortality risks in type 2 diabetes compared to the background population over time. Sci Rep 10:17376. https://doi.org/10.1038/s41598-020-73668-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D (2010) Diabetes and cancer: a consensus report. CA Cancer J Clin 60:207–221. https://doi.org/10.3322/caac.20078

    Article  PubMed  Google Scholar 

  4. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP (2015) Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350:g7607. https://doi.org/10.1136/bmj.g7607

    Article  PubMed  Google Scholar 

  5. Ling S, Brown K, Miksza JK, Howells LM, Morrison A, Issa E, Yates T, Khunti K, Davies MJ, Zaccardi F (2021) Risk of cancer incidence and mortality associated with diabetes: a systematic review with trend analysis of 203 cohorts. Nutr Metab Cardiovasc Dis 31:14–22. https://doi.org/10.1016/j.numecd.2020.09.023

    Article  PubMed  Google Scholar 

  6. Hu Y, Zhang X, Ma Y, Yuan C, Wang M, Wu K, Tabung FK, Tobias D, Hu FB, Giovannucci E, Song M (2021) Incident type 2 diabetes duration and cancer risk: a prospective study in two US cohorts. J Natl Cancer Inst 113:381–389. https://doi.org/10.1093/jnci/djaa141

    Article  CAS  PubMed  Google Scholar 

  7. Wang CR, Hu TY, Hao FB, Chen N, Peng Y, Wu JJ, Yang PF, Zhong GC (2022) Type 2 diabetes-prevention diet and all-cause and cause-specific mortality: a prospective study. Am J Epidemiol 191:472–486. https://doi.org/10.1093/aje/kwab265

    Article  PubMed  Google Scholar 

  8. Yu D, Wang Z, Cai Y, McBride K, Osuagwu UL, Pickering K, Baker J, Cutfield R, Orr-Walker BJ, Sundborn G, Jameson MB, Zhao Z, Simmons D (2022) Ethnic differences in cancer rates among adults with type 2 diabetes in new zealand from 1994 to 2018. JAMA Netw Open 5:e2147171

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ling S, Brown K, Miksza JK, Howells L, Morrison A, Issa E, Yates T, Khunti K, Davies MJ, Zaccardi F (2020) Association of type 2 diabetes with cancer: a meta-analysis with bias analysis for unmeasured confounding in 151 cohorts comprising 32 million people. Diabetes Care 43:2313–2322. https://doi.org/10.2337/dc20-0204

    Article  PubMed  Google Scholar 

  10. Chen Y, Wu F, Saito E, Lin Y, Song M, Luu HN, Gupta PC, Sawada N, Tamakoshi A, Shu XO, Koh WP, Xiang YB, Tomata Y, Sugiyama K, Park SK, Matsuo K, Nagata C, Sugawara Y, Qiao YL, You SL, Wang R, Shin MH, Pan WH, Pednekar MS, Tsugane S, Cai H, Yuan JM, Gao YT, Tsuji I, Kanemura S, Ito H, Wada K, Ahn YO, Yoo KY, Ahsan H, Chia KS, Boffetta P, Zheng W, Inoue M, Kang D, Potter JD (2017) Association between type 2 diabetes and risk of cancer mortality: a pooled analysis of over 771,000 individuals in the Asia Cohort Consortium. Diabetologia 60:1022–1032. https://doi.org/10.1007/s00125-017-4229-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njølstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J, Collaboration ERF (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841. https://doi.org/10.1056/NEJMoa1008862

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pearson-Stuttard J, Papadimitriou N, Markozannes G, Cividini S, Kakourou A, Gill D, Rizos EC, Monori G, Ward HA, Kyrgiou M, Gunter MJ, Tsilidis KK (2021) Type 2 diabetes and cancer: an umbrella review of observational and mendelian randomization studies. Cancer Epidemiol Biomarkers Prev 30:1218–1228. https://doi.org/10.1158/1055-9965.EPI-20-1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goto A, Yamaji T, Sawada N, Momozawa Y, Kamatani Y, Kubo M, Shimazu T, Inoue M, Noda M, Tsugane S, Iwasaki M (2020) Diabetes and cancer risk: a mendelian randomization study. Int J Cancer 46:712–719. https://doi.org/10.1002/ijc.32310

    Article  CAS  Google Scholar 

  14. Yuan S, Kar S, Carter P, Vithayathil M, Mason AM, Burgess S, Larsson SC (2020) Is type 2 diabetes causally associated with cancer risk? evidence from a two-sample mendelian randomization study. Diabetes 69:1588–1596. https://doi.org/10.2337/db20-0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petrick JL, Thistle JE, Zeleniuch-Jacquotte A, Zhang X, Wactawski-Wende J, Van Dyke AL, Stampfer MJ, Sinha R, Sesso HD, Schairer C, Rosenberg L, Rohan TE, Robien K, Purdue MP, Poynter JN, Palmer JR, Newton CC, Linet MS, Liao LM, Lee IM, Koshiol J, Kitahara CM, Hofmann JN, Graubard BI, Giovannucci E, Gaziano MJ, Gapstur SM, Freedman ND, Chong DQ, Chan AT, Buring JE, Freeman LBE, Campbell PT, McGlynn KA (2018) Body mass index, diabetes and intrahepatic cholangiocarcinoma risk: the liver cancer pooling project and meta-analysis. Am J Gastroenterol 113:1494–1505. https://doi.org/10.1038/s41395-018-0207-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ren HB, Yu T, Liu C, Li YQ (2011) Diabetes mellitus and increased risk of biliary tract cancer: systematic review and meta-analysis. Cancer Causes Control 22:837–847. https://doi.org/10.1007/s10552-011-9754-3

    Article  PubMed  Google Scholar 

  17. Supabphol S, Seubwai W, Wongkham S, Saengboonmee C (2021) High glucose: an emerging association between diabetes mellitus and cancer progression. J Mol Med (Berl) 99:1175–1193. https://doi.org/10.1007/s00109-021-02096-w

    Article  CAS  PubMed  Google Scholar 

  18. Stocks T, Rapp K, Bjørge T, Manjer J, Ulmer H, Selmer R, Lukanova A, Johansen D, Concin H, Tretli S, Hallmans G, Jonsson H, Stattin P (2009) Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of six prospective cohorts. PLoS Med 6:e1000201. https://doi.org/10.1371/journal.pmed.1000201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zendehdel K, Nyrén O, Ostenson CG, Adami HO, Ekbom A, Ye W (2003) cancer incidence in patients with type 1 diabetes mellitus: a population-based cohort study in Sweden. J Natl Cancer Inst 95:1797–1800. https://doi.org/10.1093/jnci/djg105

    Article  PubMed  Google Scholar 

  20. Zádori N, Szakó L, Váncsa S, Vörhendi N, Oštarijaš E, Kiss S, Frim L, Hegyi P, Czimmer J (2021) Six autoimmune disorders are associated with increased incidence of gastric cancer: a systematic review and meta-analysis of half a million patients. Front Immunol 12:750533. https://doi.org/10.3389/fimmu.2021.750533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan P, Wang Y, Fu T, Liu Y, Zhang ZJ (2021) The association between type 1 and 2 diabetes mellitus and the risk of leukemia: a systematic review and meta-analysis of 18 cohort studies. Endocr J 68:281–289. https://doi.org/10.1507/endocrj.EJ20-0138

    Article  CAS  PubMed  Google Scholar 

  22. Ge Z, Ben Q, Qian J, Wang Y, Li Y (2011) Diabetes mellitus and risk of gastric cancer: a systematic review and meta-analysis of observational studies. Eur J Gastroenterol Hepatol 23:1127–1135. https://doi.org/10.1097/MEG.0b013e32834b8d73

    Article  CAS  PubMed  Google Scholar 

  23. Larsson SC, Wolk A (2011) Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies. Diabetologia 54:1013–1018. https://doi.org/10.1007/s00125-011-2051-6

    Article  CAS  PubMed  Google Scholar 

  24. Huang W, Ren H, Ben Q, Cai Q, Zhu W, Li Z (2012) Risk of esophageal cancer in diabetes mellitus: a meta-analysis of observational studies. Cancer Causes Control 23:263–272. https://doi.org/10.1007/s10552-011-9874-9

    Article  PubMed  Google Scholar 

  25. Castillo JJ, Mull N, Reagan JL, Nemr S, Mitri J (2012) Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies. Blood 119:4845–4850. https://doi.org/10.1182/blood-2011-06-362830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohkuma T, Peters SAE, Woodward M (2018) Sex differences in the association between diabetes and cancer: a systematic review and meta-analysis of 121 cohorts including 20 million individuals and one million events. Diabetologia 61:2140–2154. https://doi.org/10.1007/s00125-018-4664-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fang HJ, Shan SB, Zhou YH, Zhong LY (2018) Diabetes mellitus and the risk of gastrointestinal cancer in women compared with men: a meta-analysis of cohort studies. BMC Cancer 18:422. https://doi.org/10.1186/s12885-018-4351-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625. https://doi.org/10.2337/diabetes.54.6.1615

    Article  CAS  PubMed  Google Scholar 

  29. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X (2019) New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 20:247–260. https://doi.org/10.1016/j.redox.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  30. Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320:C375–C391. https://doi.org/10.1152/ajpcell.00379.2020

    Article  CAS  PubMed  Google Scholar 

  31. Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, Nickenig G, Werner N (2013) High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 98:94–106. https://doi.org/10.1093/cvr/cvt013

    Article  CAS  PubMed  Google Scholar 

  32. Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer Cell 38:167–197. https://doi.org/10.1016/j.ccell.2020.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakamura H, Takada K (2021) Reactive oxygen species in cancer: current findings and future directions. Cancer Sci 112:3945–3952. https://doi.org/10.1111/cas.15068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan SF, Ramasamy R, Schmidt AM (2008) Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab 4:285–293. https://doi.org/10.1038/ncpendmet0786

    Article  CAS  PubMed  Google Scholar 

  35. Rojas A, Lindner C, Schneider I, González I, Araya H, Morales E, Gómez M, Urdaneta N, Araya P, Morales MA (2021) Diabetes mellitus contribution to the remodeling of the tumor microenvironment in gastric cancer. World J Gastrointest Oncol 13:1997–2012. https://doi.org/10.4251/wjgo.v13.i12.1997

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rojas A, Figueroa H, Morales E (2010) Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis 31:334–341. https://doi.org/10.1093/carcin/bgp322

    Article  CAS  PubMed  Google Scholar 

  37. Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA (2022) The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep. 42:BSR2022039

    Article  Google Scholar 

  38. Lopez R, Arumugam A, Joseph R, Monga K, Boopalan T, Agullo P, Gutierrez C, Nandy S, Subramani R, de la Rosa JM, Lakshmanaswamy R (2013) Hyperglycemia enhances the proliferation of non-tumorigenic and malignant mammary epithelial cells through increased leptin/IGF1R signaling and activation of AKT/mTOR. PLoS ONE 8:e79708. https://doi.org/10.1371/journal.pone.0079708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Popova NV, Jücker M (2022) The functional role of extracellular matrix proteins in cancer. Cancers (Basel) 14:238. https://doi.org/10.3390/cancers14010238

    Article  CAS  PubMed  Google Scholar 

  40. Rojas A, Añazco C, González I, Araya P (2018) Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis 39:515–521. https://doi.org/10.1093/carcin/bgy012

    Article  CAS  PubMed  Google Scholar 

  41. Grasset EM, Bertero T, Bozec A, Friard J, Bourget I, Pisano S, Lecacheur M, Maiel M, Bailleux C, Emelyanov A, Ilie M, Hofman P, Meneguzzi G, Duranton C, Bulavin DV, Gaggioli C (2018) Matrix stiffening and EGFR cooperate to promote the collective invasion of cancer cells. Cancer Res 78:5229–5242. https://doi.org/10.1158/0008-5472.CAN-18-0601

    Article  CAS  PubMed  Google Scholar 

  42. Ciraku L, Esquea EM, Reginato MJ (2022) O-GlcNAcylation regulation of cellular signaling in cancer. Cell Signal 90:110201. https://doi.org/10.1016/j.cellsig.2021.110201

    Article  CAS  PubMed  Google Scholar 

  43. Nagy T, Fisi V, Frank D, Kátai E, Nagy Z, Miseta A (2019) Hyperglycemia-Induced aberrant cell proliferation; a metabolic challenge mediated by protein O-GlcNAc modification. Cells 8:999. https://doi.org/10.3390/cells8090999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A (2019) Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol 234:8152–8161. https://doi.org/10.1002/jcp.27603

    Article  CAS  PubMed  Google Scholar 

  45. Rohm TV, Meier DT, Olefsky JM, Donath MY (2022) Inflammation in obesity, diabetes, and related disorders. Immunity 55:31–55. https://doi.org/10.1016/j.immuni.2021.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J (2021) Dietary AGEs as exogenous boosters of inflammation. Nutrients 13:2802. https://doi.org/10.3390/nu13082802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsujimoto T, Kajio H, Sugiyama T (2017) Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: a population-based observational study. Int J Cancer 141:102–111. https://doi.org/10.1002/ijc.30729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Unoki H, Bujo H, Yamagishi S, Takeuchi M, Imaizumi T, Saito Y (2007) Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes. Diabetes Res Clin Pract 76:236–244. https://doi.org/10.1016/j.diabres.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  49. Nielsen J, Brandt J, Boesen T, Hummelshøj T, Slaaby R, Schluckebier G, Nissen P (2022) Structural investigations of full-length insulin receptor dynamics and signalling. J Mol Biol 434:167458. https://doi.org/10.1016/j.jmb.2022.167458

    Article  CAS  PubMed  Google Scholar 

  50. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928. https://doi.org/10.1038/nrc2536

    Article  CAS  PubMed  Google Scholar 

  51. Kirstein M, Aston C, Hintz R, Vlassara H (1992) Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins. J Clin Invest 90:439–446. https://doi.org/10.1172/JCI115879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh P, Alex JM, Bast F (2014) Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 31:805. https://doi.org/10.1007/s12032-013-0805-3

    Article  CAS  PubMed  Google Scholar 

  53. Yang SJ, Chen CY, Chang GD, Wen HC, Chen CY, Chang SC, Liao JF, Chang CH (2013) Activation of Akt by advanced glycation end products (AGEs): involvement of IGF-1 receptor and caveolin-1. PLoS ONE 8:e58100. https://doi.org/10.1371/journal.pone.0058100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chiefari E, Mirabelli M, La Vignera S, Tanyolaç S, Foti DP, Aversa A, Brunetti A (2021) Insulin resistance and cancer: in search for a causal link. Int J Mol Sci 22:11137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saisana M, Griffin SM, May FEB (2022) Insulin and the insulin receptor collaborate to promote human gastric cancer. Gastric Cancer 25:107–123. https://doi.org/10.1007/s10120-021-01236-y

    Article  CAS  PubMed  Google Scholar 

  56. Vella V, Giuliano M, La Ferlita A, Pellegrino M, Gaudenzi G, Alaimo S, Massimino M, Pulvirenti A, Dicitore A, Vigneri P, Vitale G, Malaguarnera R, Morrione A, Sims AH, Ferro A, Maggiolini M, Lappano R, De Francesco EM, Belfiore A (2021) Novel mechanisms of tumor promotion by the insulin receptor isoform a in triple-negative breast cancer cells. Cells 10:3145. https://doi.org/10.3390/cells10113145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y (2021) Definition, prevalence, and risk factors of low sex hormone-binding globulin in US adults. J Clin Endocrinol Metab 106:e3946–e3956. https://doi.org/10.1210/clinem/dgab416

    Article  PubMed  PubMed Central  Google Scholar 

  58. Folkerd EJ, Dowsett M (2010) Influence of sex hormones on cancer progression. J Clin Oncol 28:4038–4044. https://doi.org/10.1200/JCO.2009.27.4290

    Article  CAS  PubMed  Google Scholar 

  59. Ampofo AG, Boateng EB (2020) Beyond 2020: modelling obesity and diabetes prevalence. Diabetes Res Clin Pract 167:108362. https://doi.org/10.1016/j.diabres.2020.108362

    Article  PubMed  Google Scholar 

  60. Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15:507–524. https://doi.org/10.1038/s41574-019-0230-6

    Article  CAS  PubMed  Google Scholar 

  61. Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23:770–784. https://doi.org/10.1016/j.cmet.2016.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97. https://doi.org/10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. La Cava A (2017) Leptin in inflammation and autoimmunity. Cytokine 98:51–58. https://doi.org/10.1016/j.cyto.2016.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M (2016) Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine 86:100–109. https://doi.org/10.1016/j.cyto.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  65. Sonmez A, Yumuk V, Haymana C, Demirci I, Barcin C, Kıyıcı S, Güldiken S, Örük G, Saydam BO, Baldane S, Kutlutürk F, Küçükler FK, Deyneli O, Çetinarslan B, Sabuncu T, Bayram F, Satman I, TEMD Study Group (2019) Impact of obesity on the metabolic control of Type 2 diabetes: results of the turkish nationwide survey of glycemic and other metabolic parameters of patients with diabetes mellitus (TEMD obesity study). Obes Facts 12:167–178. https://doi.org/10.1159/000496624

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, International Agency for Research on Cancer Handbook Working Group (2016) Body fatness and cancer-viewpoint of the IARC working group. N Engl J Med 375:794–8. https://doi.org/10.1056/NEJMsr1606602

    Article  PubMed  PubMed Central  Google Scholar 

  67. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92:121–135. https://doi.org/10.1016/j.metabol.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  68. Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI (2019) Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol (Dordr) 42:243–260. https://doi.org/10.1007/s13402-019-00428-0

    Article  CAS  PubMed  Google Scholar 

  69. Muppala S, Konduru SKP, Merchant N, Ramsoondar J, Rampersad CK, Rajitha B, Mukund V, Kancherla J, Hammond A, Barik TK, Mannarapu M, Alam A, Basha R, Bramhachari PV, Verma D, Sushma PS, Pattnaik S, Nagaraju GP (2017) Adiponectin: its role in obesity-associated colon and prostate cancers. Crit Rev Oncol Hematol 116:125–133. https://doi.org/10.1016/j.critrevonc.2017.06.003

    Article  PubMed  Google Scholar 

  70. Di Zazzo E, Polito R, Bartollino S, Nigro E, Porcile C, Bianco A, Daniele A, Moncharmont B (2019) adiponectin as link factor between adipose tissue and cancer. Int J Mol Sci 20:839. https://doi.org/10.3390/ijms20040839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guo Z, Huang D, Tang X, Han J, Li J (2015) Correlation between advanced glycation end-products and the expression of fatty inflammatory factors in type II diabetic cardiomyopathy. Bosn J Basic Med Sci 15:15–9

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sayej WN, Knight Iii PR, Guo WA, Mullan B, Ohtake PJ, Davidson BA, Khan A, Baker RD, Baker SS (2016) Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-type mice. Biomed Res Int 2016:7867852. https://doi.org/10.1155/2016/7867852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5:150–159. https://doi.org/10.1038/ncpendmet1066

    Article  CAS  PubMed  Google Scholar 

  74. Zhang L, Han L, He J, Lv J, Pan R, Lv T (2020) A high serum-free fatty acid level is associated with cancer. J Cancer Res Clin Oncol 146:705–710. https://doi.org/10.1007/s00432-019-03095-8

    Article  CAS  PubMed  Google Scholar 

  75. Yao X, Tian Z (2015) Dyslipidemia and colorectal cancer risk: a meta-analysis of prospective studies. Cancer Causes Control 26:257–268. https://doi.org/10.1007/s10552-014-0507-y

    Article  PubMed  Google Scholar 

  76. Kitahara CM, Berrington de González A, Freedman ND, Huxley R, Mok Y, Jee SH, Samet JM (2011) Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol 29:1592–1598. https://doi.org/10.1200/JCO.2010.31.5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY, McDonnell DP (2021) Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun 12:5103. https://doi.org/10.1038/s41467-021-25354-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wolf G (2008) Role of fatty acids in the development of insulin resistance and type 2 diabetes mellitus. Nutr Rev 66:597–600. https://doi.org/10.1111/j.1753-4887.2008.00110.x

    Article  PubMed  Google Scholar 

  79. Hotamisligil GS, Bernlohr DA (2015) Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat Rev Endocrinol 11:592–605. https://doi.org/10.1038/nrendo.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prentice KJ, Saksi J, Hotamisligil GS (2019) Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J Lipid Res 60:734–740. https://doi.org/10.1194/jlr.S091793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spiller S, Blüher M, Hoffmann R (2018) Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes Obes Metab 20:2661–2669. https://doi.org/10.1111/dom.13449

    Article  CAS  PubMed  Google Scholar 

  82. Snaebjornsson MT, Janaki-Raman S, Schulze A (2020) Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab 31:62–76. https://doi.org/10.1016/j.cmet.2019.11.010

    Article  CAS  PubMed  Google Scholar 

  83. Madak-Erdogan Z, Band S, Zhao YC, Smith BP, Kulkoyluoglu-Cotul E, Zuo Q, Santaliz Casiano A, Wrobel K, Rossi G, Smith RL, Kim SH, Katzenellenbogen JA, Johnson ML, Patel M, Marino N, Storniolo AMV, Flaws JA (2019) Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer Res 79:2494–2510. https://doi.org/10.1158/0008-5472.CAN-18-2849

    Article  CAS  PubMed  Google Scholar 

  84. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61. https://doi.org/10.1016/j.cell.2009.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen M, Zhang J, Sampieri K, Clohessy JG, Mendez L, Gonzalez-Billalabeitia E, Liu XS, Lee YR, Fung J, Katon JM, Menon AV, Webster KA, Ng C, Palumbieri MD, Diolombi MS, Breitkopf SB, Teruya-Feldstein J, Signoretti S, Bronson RT, Asara JM, Castillo-Martin M, Cordon-Cardo C, Pandolfi PP (2018) An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet 50:206–218. https://doi.org/10.1038/s41588-017-0027-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Metwaly A, Reitmeier S, Haller D (2022) Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat Rev. https://doi.org/10.1038/s41575-022-00581-2

    Article  Google Scholar 

  87. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D (2019) The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol 14:50–59

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jamshidi P, Hasanzadeh S, Tahvildari A, Farsi Y, Arbabi M, Mota JF, Sechi LA, Nasiri MJ (2019) Is there any association between gut microbiota and type 1 diabetes? A systematic review Gut Pathog 11:49. https://doi.org/10.1186/s13099-019-0332-7

    Article  PubMed  Google Scholar 

  89. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020 51:102590

    Article  Google Scholar 

  90. Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, Wei Y (2022) Gut microbiota: a new target for T2DM prevention and treatment. Front Endocrinol (Lausanne) 13:958218. https://doi.org/10.3389/fendo.2022.958218

    Article  PubMed  Google Scholar 

  91. Fernandes R, Viana SD, Nunes S, Reis F (2019) Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim Biophys Acta Mol Basis Dis 1865:1876–1897. https://doi.org/10.1016/j.bbadis.2018.09.032

    Article  CAS  PubMed  Google Scholar 

  92. Noureldein M, Nawfal R, Bitar S, Maxwell SS, Khurana I, Kassouf HK, Khuri FR, El-Osta A, Eid AA (2022) Intestinal microbiota regulates diabetes and cancer progression by IL-1β and NOX4 dependent signaling cascades. Cell Mol Life Sci 79:502. https://doi.org/10.1007/s00018-022-04485-x

    Article  CAS  PubMed  Google Scholar 

  93. Cazzaniga M, Zonzini GB, Di Pierro F, Moricoli S, Bertuccioli A (2022) Gut microbiota, metabolic disorders and breast cancer: could berberine turn out to be a transversal nutraceutical tool? A narrative analysis. Int J Mol Sci 23:12538. https://doi.org/10.3390/ijms232012538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Grochowska M, Perlejewski K, Laskus T, Radkowski M (2022) The role of gut microbiota in gastrointestinal tract cancers. Arch Immunol Ther Exp (Warsz) 70:7. https://doi.org/10.1007/s00005-021-00641-6

    Article  PubMed  Google Scholar 

  95. Raza MH, Gul K, Arshad A, Riaz N, Waheed U, Rauf A, Aldakheel F, Alduraywish S, Rehman MU, Abdullah M, Arshad M (2019) Microbiota in cancer development and treatment. J Cancer Res Clin Oncol 145:49–63. https://doi.org/10.1007/s00432-018-2816-0

    Article  CAS  PubMed  Google Scholar 

  96. Wang RH, Chu YH, Lin KT (2021) The hidden role of hydrogen sulfide metabolism in cancer. Int J Mol Sci 22:6562. https://doi.org/10.3390/ijms22126562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buret AG, Allain T, Motta JP, Wallace JL (2022) Effects of hydrogen sulfide on the microbiome: from toxicity to therapy. Antioxid Redox Signal 36:211–219. https://doi.org/10.1089/ars.2021.0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, Keller MP, Attie AD, Rey FE, Denu JM (2016) Diet-Microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64:982–992. https://doi.org/10.1016/j.molcel.2016.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S (2021) Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 139:111619. https://doi.org/10.1016/j.biopha.2021.111619

    Article  CAS  PubMed  Google Scholar 

  100. Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L, Wang Y (2022) Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 14:2134689. https://doi.org/10.1080/19490976.2022.2134689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jaye K, Chang D, Li CG, Bhuyan DJ (2022) Gut metabolites and breast cancer: the continuum of dysbiosis, breast cancer risk, and potential breast cancer therapy. Int J Mol Sci 23:9490. https://doi.org/10.3390/ijms23169490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu Y, Cheuk-Hay Lau H, Cheng WY, Yu J (2022) Gut microbiome in colorectal cancer: clinical diagnosis and treatment. Genomics Proteomics Bioinformatics S1672–0229:00086–00089. https://doi.org/10.1016/j.gpb.2022.07.002

    Article  Google Scholar 

  103. Han M, Wang N, Han W, Ban M, Sun T, Xu J (2022) Gut microbes in gynecologic cancers: causes or biomarkers and therapeutic potential. Front Oncol 12:902695. https://doi.org/10.3389/fonc.2022.902695

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jain T, Sharma P, Are AC, Vickers SM, Dudeja V (2021) New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol 12:622064. https://doi.org/10.3389/fimmu.2021.622064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu X, Chen Y, Zhang S, Dong L (2021) Gut microbiota-mediated immunomodulation in tumor. J Exp Clin Cancer Res 40:221. https://doi.org/10.1186/s13046-021-01983-x

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen S, Zhang L, Li M, Zhang Y, Sun M, Wang L, Lin J, Cui Y, Chen Q, Jin C, Li X, Wang B, Chen H, Zhou T, Wang L, Hsu CH, Zhuo W (2022) Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis. Nat Commun 13:1248. https://doi.org/10.1038/s41467-022-28913-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. https://doi.org/10.1126/science.1224820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P, Rossetti S, Berretta M, Facchini G, Perdonà S, Turco MC, Arra C (2018) Microbiota effects on cancer: from risks to therapies. Oncotarget 9:17915–17927

    Article  PubMed  PubMed Central  Google Scholar 

  109. Warburg O (1956) On the origin of cancer cells. Science 123:309–314. https://doi.org/10.1126/science.123.3191.309

    Article  CAS  PubMed  Google Scholar 

  110. Sas KM, Kayampilly P, Byun J, Nair V, Hinder LM, Hur J, Zhang H, Lin C, Qi NR, Michailidis G, Groop PH, Nelson RG, Darshi M, Sharma K, Schelling JR, Sedor JR, Pop-Busui R, Weinberg JM, Soleimanpour SA, Abcouwer SF, Gardner TW, Burant CF, Feldman EL, Kretzler M, Brosius FC 3rd, Pennathur S (2016) Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 1:e86976. https://doi.org/10.1172/jci.insight.86976

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C (2018) Methylglyoxal-derived stress: an emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 49:64–74. https://doi.org/10.1016/j.semcancer.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  112. Bellier J, Nokin MJ, Lardé E, Karoyan P, Peulen O, Castronovo V, Bellahcène A (2019) Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res Clin Pract 148:200–211. https://doi.org/10.1016/j.diabres.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  113. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115. https://doi.org/10.1074/jbc.M202487200

    Article  CAS  PubMed  Google Scholar 

  114. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz-Pinedo C, Rehm M, Chevet E, Samali A (2019) Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 286:241–278. https://doi.org/10.1111/febs.14608

    Article  CAS  PubMed  Google Scholar 

  115. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5:a013169. https://doi.org/10.1101/cshperspect.a013169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lemmer IL, Willemsen N, Hilal N, Bartelt A (2021) A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 47:101169. https://doi.org/10.1016/j.molmet.2021.101169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ni L, Yuan C, Wu X (2021) Endoplasmic reticulum stress in diabetic nephrology: regulation, pathological role, and therapeutic potential. Oxid Med Cell Longev 2021:7277966. https://doi.org/10.1155/2021/7277966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rabbani N, Xue M, Thornalley PJ (2021) Dicarbonyl stress, protein glycation and the unfolded protein response. Glycoconj J 38:331–340. https://doi.org/10.1007/s10719-021-09980-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pathomthongtaweechai N, Chutipongtanate S (2020) AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomed Pharmacother 131:110655

    Article  CAS  PubMed  Google Scholar 

  120. Lv S, Li X, Wang H (2021) The role of the effects of endoplasmic reticulum stress on NLRP3 inflammasome in diabetes. Front Cell Dev Biol 9:663528. https://doi.org/10.3389/fcell.2021.663528

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ji T, Han Y, Yang W, Xu B, Sun M, Jiang S, Yu Y, Jin Z, Ma Z, Yang Y, Hu W (2019) Endoplasmic reticulum stress and NLRP3 inflammasome: crosstalk in cardiovascular and metabolic disorders. J Cell Physiol 234:14773–14782. https://doi.org/10.1002/jcp.28275

    Article  CAS  PubMed  Google Scholar 

  122. Wang Z, Zhang S, Xiao Y, Zhang W, Wu S, Qin T, Yue Y, Qian W, Li L (2020) NLRP3 Inflammasome and inflammatory diseases. Oxid Med Cell Longev 2020:4063562. https://doi.org/10.1155/2020/4063562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sharma BR, Kanneganti TD (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 22:550–559. https://doi.org/10.1038/s41590-021-00886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Karki R, Man SM, Kanneganti TD (2017) Inflammasomes and cancer. cancer. Immunol Res 5:94–99. https://doi.org/10.1158/2326-6066.CIR-16-0269

    Article  CAS  Google Scholar 

  125. Lin JA, Wu CH, Lu CC, Hsia SM, Yen GC (2016) Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: an emerging biological factor in cancer onset and progression. Mol Nutr Food Res 60:1850–1864. https://doi.org/10.1002/mnfr.201500759

    Article  CAS  PubMed  Google Scholar 

  126. Piperi C, Adamopoulos C, Dalagiorgou G, Diamanti-Kandarakis E, Papavassiliou AG (2012) Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab 97:2231–2242. https://doi.org/10.1210/jc.2011-3408

    Article  CAS  PubMed  Google Scholar 

  127. Passarelli M, Machado UFF (2021) AGEs-induced and endoplasmic reticulum stress/inflammation-mediated regulation of GLUT4 expression and atherogenesis in diabetes mellitus. Cells 11:104. https://doi.org/10.3390/cells11010104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2017) Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168:692–706. https://doi.org/10.1016/j.cell.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen X, Cubillos-Ruiz JR (2021) Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 21:71–88. https://doi.org/10.1038/s41568-020-00312-2

    Article  CAS  PubMed  Google Scholar 

  130. Oakes SA (2020) Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol 190:934–946. https://doi.org/10.1016/j.ajpath.2020.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Han KS, Li N, Raven PA, Fazli L, Frees S, Ettinger S, Park KC, Hong SJ, Gleave ME, So AI (2015) Inhibition of endoplasmic reticulum chaperone protein glucose-regulated protein 78 potentiates anti-angiogenic therapy in renal cell carcinoma through inactivation of the PERK/eIF2α pathway. Oncotarget 6:34818–30

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lee HM, Lee SC, He L, Kong APS, Mao D, Hou Y, Chung ACK, Xu G, Ma RCW, Chan JCN (2021) Legacy effect of high glucose on promoting survival of HCT116 colorectal cancer cells by reducing endoplasmic reticulum stress response. Am J Cancer Res 11:6004–6023

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ling C, Rönn T (2019) Epigenetics in human obesity and type 2 diabetes. Cell Metab 29:1028–1044. https://doi.org/10.1016/j.cmet.2019.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Loh M, Zhou L, Ng HK, Chambers JC (2019) Epigenetic disturbances in obesity and diabetes: epidemiological and functional insights. Mol Metab 27:S33–S41. https://doi.org/10.1016/j.molmet.2019.06.011

    Article  CAS  PubMed Central  Google Scholar 

  135. Natarajan R (2021) Epigenetic mechanisms in diabetic vascular complications and metabolic memory: the 2020 edwin bierman award lecture. Diabetes 70:328–337. https://doi.org/10.2337/dbi20-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee C, An D, Park J (2016) Hyperglycemic memory in metabolism and cancer. Horm Mol Biol Clin Investig 26:77–85. https://doi.org/10.1515/hmbci-2016-0022

    Article  CAS  PubMed  Google Scholar 

  137. Nishikawa T, Araki E (2016) Involvement of advanced glycation end-products in “hyperglycemic memory.” J Diabetes Investig 7:297–299. https://doi.org/10.1111/jdi.12405

    Article  PubMed  Google Scholar 

  138. Zheng Q, Maksimovic I, Upad A, David Y (2020) Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell 11:401–416. https://doi.org/10.1007/s13238-020-00722-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mir AR, Habib S, Uddin M (2021) Recent advances in histone glycation: emerging role in diabetes and cancer. Glycobiology 31:1072–1079. https://doi.org/10.1093/glycob/cwab011

    Article  CAS  PubMed  Google Scholar 

  140. Harmel R, Fiedler D (2018) Features and regulation of non-enzymatic post-translational modifications. Nat Chem Biol 14:244–252. https://doi.org/10.1038/nchembio.2575

    Article  CAS  PubMed  Google Scholar 

  141. Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M (2022) Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 83:543–555. https://doi.org/10.1016/j.semcancer.2020.11.019

    Article  CAS  PubMed  Google Scholar 

  142. Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y (2020) Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 19:79. https://doi.org/10.1186/s12943-020-01197-3

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wu D, Hu D, Chen H, Shi G, Fetahu IS, Wu F, Rabidou K, Fang R, Tan L, Xu S, Liu H, Argueta C, Zhang L, Mao F, Yan G, Chen J, Dong Z, Lv R, Xu Y, Wang M, Ye Y, Zhang S, Duquette D, Geng S, Yin C, Lian CG, Murphy GF, Adler GK, Garg R, Lynch L, Yang P, Li Y, Lan F, Fan J, Shi Y, Shi YG (2018) Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559:637–641. https://doi.org/10.1038/s41586-018-0350-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Xu T, Gao H (2020) Hydroxymethylation and tumors: can 5-hydroxymethylation be used as a marker for tumor diagnosis and treatment? Hum Genomics 14:15. https://doi.org/10.1186/s40246-020-00265-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ramteke P, Deb A, Shepal V, Bhat MK (2019) Hyperglycemia associated metabolic and molecular alterations in cancer risk, progression, treatment, and mortality. Cancers (Basel) 11:1402. https://doi.org/10.3390/cancers11091402

    Article  CAS  PubMed  Google Scholar 

  146. Tang X, Tang G, Ozcan S (2008) Role of microRNAs in diabetes. Biochim Biophys Acta 1779:697–701. https://doi.org/10.1016/j.bbagrm.2008.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wu B (2017) Miller D (2017) involvement of MicroRNAs in diabetes and its complications. Methods Mol Biol 1617:225–239. https://doi.org/10.1007/978-1-4939-7046-9_17

    Article  CAS  PubMed  Google Scholar 

  148. Ali AS, Ali S, Ahmad A, Bao B, Philip PA, Sarkar FH (2011) Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. Obes Rev 12:1050–1062. https://doi.org/10.1111/j.1467-789X.2011.00906.x

    Article  CAS  PubMed  Google Scholar 

  149. Durrani IA, Bhatti A, John P (2021) Regulatory MicroRNAs in T2DM and breast cancer. Processes 9:819. https://doi.org/10.3390/pr9050819

    Article  CAS  Google Scholar 

  150. Wang H (2020) MicroRNA diabetes mellitus and colorectal cancer. Biomedicines 8:530. https://doi.org/10.3390/biomedicines8120530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Long J, Wang Y, Wang W, Chang BH, Danesh FR (2010) Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 285:23457–23465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1:e116. https://doi.org/10.1371/journal.pone.0000116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717. https://doi.org/10.2337/db07-1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. de Souza P, Simonini R, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, Malekpour F, Volinia S, Croce CM, Najmabadi H, Diederichs S, Sahin Ö, Mayer D, Lyko F, Hoheisel JD, Riazalhosseini Y (2010) Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res 70:9175–84. https://doi.org/10.1158/0008-5472.CAN-10-1318

    Article  CAS  Google Scholar 

  155. Klil-Drori AJ, Azoulay L, Pollak MN (2017) Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing? Nat Rev Clin Oncol 14:85–99. https://doi.org/10.1038/nrclinonc.2016.120

    Article  CAS  PubMed  Google Scholar 

  156. Laskar J, Bhattacharjee K, Sengupta M, Choudhury Y (2018) Anti-diabetic drugs: cure or risk factors for cancer? Pathol Oncol Res 24:745–755. https://doi.org/10.1007/s12253-018-0402-z

    Article  CAS  PubMed  Google Scholar 

  157. Vihervuori VJ, Talala K, Taari K, Lahtela J, Tammela TLJ, Auvinen A, Raittinen P, Murtola TJ (2021) Antidiabetic drugs and prostate cancer prognosis in a finnish population-based cohort. Cancer Epidemiol Biomarkers Prev 30:982–989. https://doi.org/10.1158/1055-9965.EPI-19-0580

    Article  CAS  PubMed  Google Scholar 

  158. Ng CW, Jiang AA, Toh EMS, Ng CH, Ong ZH, Peng S, Tham HY, Sundar R, Chong CS, Khoo CM (2020) Metformin and colorectal cancer: a systematic review, meta-analysis and meta-regression. Int J Colorectal Dis 35:1501–1512. https://doi.org/10.1007/s00384-020-03676-x

    Article  PubMed  Google Scholar 

  159. Sugiura K, Okabayashi K, Seishima R, Ishida T, Shigeta K, Tsuruta M, Hasegawa H, Kitagawa Y (2022) Metformin inhibits the development and metastasis of colorectal cancer. Med Oncol 39:136. https://doi.org/10.1007/s12032-022-01722-y

    Article  CAS  PubMed  Google Scholar 

  160. Xu K, Sun G, Li M, Chen H, Zhang Z, Qian X, Li P, Xu L, Huang W, Wang X (2019) Glibenclamide targets sulfonylurea receptor 1 to Inhibit p70S6K activity and upregulate KLF4 expression to suppress non-small cell lung carcinoma. Mol Cancer Ther 18:2085–2096. https://doi.org/10.1158/1535-7163.MCT-18-1181

    Article  CAS  PubMed  Google Scholar 

  161. Hendriks AM, Schrijnders D, Kleefstra N, de Vries EGE, Bilo HJG, Jalving M, Landman GWD (2019) Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol 861:172598. https://doi.org/10.1016/j.ejphar.2019.172598

    Article  CAS  PubMed  Google Scholar 

  162. Kim HJ, Lee S, Chun KH, Jeon JY, Han SJ, Kim DJ, Kim YS, Woo JT, Nam MS, Baik SH, Ahn KJ, Lee KW (2018) Metformin reduces the risk of cancer in patients with type 2 diabetes: an analysis based on the Korean national diabetes program cohort. Medicine (Baltimore) 97:e0036. https://doi.org/10.1097/MD.0000000000010036

    Article  CAS  PubMed  Google Scholar 

  163. Coyle C, Cafferty FH, Vale C, Langley RE (2016) Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol 27:2184–2195. https://doi.org/10.1093/annonc/mdw410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Marini C, Cossu V, Bauckneht M, Lanfranchi F, Raffa S, Orengo AM, Ravera S, Bruno S, Sambuceti G (2021) Metformin and cancer glucose metabolism: at the bench or at the bedside? Biomolecules 11:1231. https://doi.org/10.3390/biom11081231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J (2021) Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 21:499. https://doi.org/10.1186/s12935-021-02202-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, Zhang X, Khan NUH, Wang L, Zhou J (2021) Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res 40:206. https://doi.org/10.1186/s13046-021-02012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Colmers IN, Bowker SL, Tjosvold LA, Johnson JA (2012) Insulin use and cancer risk in patients with type 2 diabetes: a systematic review and meta-analysis of observational studies. Diabetes Metab 38:485–506. https://doi.org/10.1016/j.diabet.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  168. Holden SE, Jenkins-Jones S, Morgan CL, Schernthaner G, Currie CJ (2015) Glucose-lowering with exogenous insulin monotherapy in type 2 diabetes: dose association with all-cause mortality, cardiovascular events and cancer. Diabetes Obes Metab 17:350–362. https://doi.org/10.1111/dom.12412

    Article  CAS  PubMed  Google Scholar 

  169. Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V (2021) Role of peroxisome proliferator-activated receptor gamma (PPARγ) in different disease states: recent updates. Curr Med Chem 28:3193–3215. https://doi.org/10.2174/0929867327666200716113136

    Article  CAS  PubMed  Google Scholar 

  170. Gou Q, Gong X, Jin J, Shi J, Hou Y (2017) Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 8:60704–60709

    Article  PubMed  PubMed Central  Google Scholar 

  171. Blanquicett C, Roman J, Hart CM (2008) Thiazolidinediones as anti-cancer agents. Cancer Ther 6:25–34

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Tang H, Shi W, Fu S, Wang T, Zhai S, Song Y, Han J (2018) Pioglitazone and bladder cancer risk: a systematic review and meta-analysis. Cancer Med 7:1070–1080. https://doi.org/10.1002/cam4.1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dicembrini I, Nreu B, Montereggi C, Mannucci E, Monami M (2020) Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials. Acta Diabetol 57:689–696. https://doi.org/10.1007/s00592-020-01479-8

    Article  CAS  PubMed  Google Scholar 

  174. Yamamoto L, Yamashita S, Nomiyama T, Kawanami T, Hamaguchi Y, Shigeoka T, Horikawa T, Tanaka Y, Yanase T, Kawanami D, Iwasaki A (2021) Sodium-glucose cotransporter 2 inhibitor canagliflozin attenuates lung cancer cell proliferation in vitro. Diabetol Int 12:389–398. https://doi.org/10.1007/s13340-021-00494-6

    Article  PubMed  PubMed Central  Google Scholar 

  175. Koepsell H (2017) The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 170:148–165. https://doi.org/10.1016/j.pharmthera.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  176. Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J (2017) SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia 60:1862–1872. https://doi.org/10.1007/s00125-017-4370-8

    Article  CAS  PubMed  Google Scholar 

  177. Ptaszynska A, Cohen SM, Messing EM, Reilly TP, Johnsson E, Johnsson K (2015) Assessing bladder cancer risk in type 2 diabetes clinical trials: the dapagliflozin drug development program as a “case study.” Diabetes Ther 6:357–375. https://doi.org/10.1007/s13300-015-0128-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. García M, Arteche-Martinez U, Lertxundi U, Aguirre C (2021) SGLT2 Inhibitors and bladder cancer: analysis of cases reported in the european pharmacovigilance database. J Clin Pharmacol 61:187–192. https://doi.org/10.1002/jcph.1722

    Article  CAS  PubMed  Google Scholar 

  179. Dicembrini I, Nreu B, Mannucci E, Monami M (2019) Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and cancer: a meta-analysis of randomized controlled trials. Diabetes Obes Metab 21:1871–1877. https://doi.org/10.1111/dom.13745

    Article  CAS  PubMed  Google Scholar 

  180. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R, Diabetes Atlas Committee IDF (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes Atlas 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  181. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2020) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the original ideas and writing of this paper. Armando Rojas, designed the report and wrote the paper; Cristian Lindner art-work and data acquisition, drafting and revising the manuscript, Ivan Schneider, Ileana Gonzalez,and Miguel A. Morales, data acquisition, drafting and revising the manuscript.

Corresponding author

Correspondence to Armando Rojas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, A., Schneider, I., Lindner, C. et al. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 478, 1743–1758 (2023). https://doi.org/10.1007/s11010-022-04630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04630-x

Keywords

Navigation