Skip to main content

Advertisement

Log in

Comparisons of pleiotropic effects of SGLT2 inhibition and GLP-1 agonism on cardiac glucose intolerance in heart dysfunction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recent studies discuss the evidence of lesser degrees of hyperglycemia contribution to cardiovascular disease (CVD) than impaired glucose tolerance. Indeed, the biggest risk for CVD seems to shift to glucose intolerance in humans with insulin resistance. Although there is a connection between abnormal insulin signaling and heart dysfunction in diabetics, there is also a relation between cardiac insulin resistance and aging heart failure (HF). Moreover, studies have revealed that HF is associated with generalized insulin resistance. Recent clinical outcomes parallel to the experimental data undertaken with antihyperglycemic drugs have shown their beneficial effects on the cardiovascular system through a direct effect on the myocardium, beyond their ability to lower blood glucose levels and their receptor-associated actions. In this regard, several new-class drugs, such as glucagon-like peptide 1 receptor agonists (GLP-1Ra) and sodium-glucose cotransport 2 inhibitors (SGLT2i), can improve cardiac health beyond their ability to control glycemia. In recent years, great improvements have been made toward the possibility of direct heart-targeting effects including modulation of the expression of specific cardiac genes in vivo for therapeutic purposes. However, many questions remain unanswered, regarding their therapeutic effects on cardiomyocytes in heart failure, although there are various cellular levels studies with these drugs. There are also some important comparative studies on the role of SGLT2i versus GLP-1Ra in patients with and without CVD as well as with or without hyperglycemia. Here, we sought to summarize and interpret the available evidence from clinical studies focusing on the effects of either GLP-1Ra or SGLT-2i or their combinations on cardiac structure and function. Furthermore, we documented data from experimental studies, at systemic, organ, and cellular levels. Overall, one can summarize that both clinical and experimental data support that either SGLT2i or GLP-1R agonists have similar benefits as cardioprotective agents in patients with or without impaired glucose tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sciacqua A, Succurro E, Armentaro G, Miceli S, Pastori D, Rengo G, Sesti G (2021) Pharmacological treatment of type 2 diabetes in elderly patients with heart failure: randomized trials and beyond. Heart Fail Rev. https://doi.org/10.1007/s10741-021-10182-x

    Article  PubMed  Google Scholar 

  2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O (2021) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  3. Seferović PM, Coats AJ, Ponikowski P, Filippatos G, Huelsmann M, Jhund PS, Polovina MM, Komajda M, Seferović J, Sari I (2020) European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. Eur J Heart Fail 22:196–213

    Article  PubMed  Google Scholar 

  4. Tomasoni D, Adamo M, Lombardi CM, Metra M (2019) Highlights in heart failure. ESC Heart Failure 6:1105–1127

    Article  PubMed  Google Scholar 

  5. Riehle C, Abel ED (2016) Insulin signaling and heart failure. Circ Res 118:1151–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F (2014) Heart failure-specific changes in protein kinase signalling. Pflügers Archiv-Eur J Physiol 466:1151–1162

    Article  CAS  Google Scholar 

  7. Van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Investig 123:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  8. Olgar Y, Billur D, Tuncay E, Turan B (2020) MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Exp Gerontol 136:110961. https://doi.org/10.1016/j.exger.2020.110961

    Article  CAS  PubMed  Google Scholar 

  9. Olgar Y, Tuncay E, Degirmenci S, Billur D, Dhingra R, Kirshenbaum L, Turan B (2020) Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca(2+) homeostasis and promotes cardiac dysfunction. J Cell Mol Med 24:8567–8578. https://doi.org/10.1111/jcmm.15483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Olgar Y, Turan B (2019) A sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin comparison with insulin shows important effects on Zn(2+)-transporters in cardiomyocytes from insulin-resistant metabolic syndrome rats through inhibition of oxidative stress (1). Can J Physiol Pharmacol 97:528–535. https://doi.org/10.1139/cjpp-2018-0466

    Article  CAS  PubMed  Google Scholar 

  11. Velez M, Kohli S, Sabbah HN (2014) Animal models of insulin resistance and heart failure. Heart Fail Rev 19:1–13

    Article  CAS  PubMed  Google Scholar 

  12. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, Harrington D, Kox WJ, Poole-Wilson PA, Coats AJ (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349:1050–1053

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Ni J, Guo R, Li L, Su J, He F, Fan G (2021) SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail Rev. https://doi.org/10.1007/s10741-021-10096-8

    Article  PubMed  Google Scholar 

  14. Mak D, Ryan KA, Han JC (2021) Review of insulin resistance in dilated cardiomyopathy and implications for the pediatric patient short title: insulin resistance DCM and pediatrics. Front Pediatr. https://doi.org/10.3389/fped.2021.756593

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aroor AR, Mandavia CH, Sowers JR (2012) Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin 8:609–617

    Article  PubMed  PubMed Central  Google Scholar 

  16. Olgar Y, Durak A, Bitirim CV, Tuncay E, Turan B (2021) Insulin acts as an atypical KCNQ1/KCNE1-current activator and reverses long QT in insulin-resistant aged rats by accelerating the ventricular action potential repolarization through affecting the beta3 -adrenergic receptor signaling pathway. J Cell Physiol. https://doi.org/10.1002/jcp.30597

    Article  PubMed  Google Scholar 

  17. Inan EA, Turan B (2020) Roles of daily diet and beta-adrenergic system in the treatment of obesity and diabetes. In: Maulik N, Maulik N (eds) Personalized nutrition as medical therapy for high-risk diseases. CRC Press, Boca Raton, pp 113–152

    Chapter  Google Scholar 

  18. Turan B (2019) A brief overview from the physiological and detrimental roles of zinc homeostasis via zinc transporters in the heart. Biol Trace Elem Res 188:160–176

    Article  CAS  PubMed  Google Scholar 

  19. Turan B (2020) Role of sodium-glucose co-transporters on cardiac function in metabolic syndrome mammalians. In: Tappia PS, Bhullar SK, Dhalla NS (eds) Biochemistry of cardiovascular dysfunction in obesity. Springer, Cham, pp 125–144

    Chapter  Google Scholar 

  20. Turan B, Billur D (2021) New therapeutic agents in obesity-related cardiovascular disorders: molecular and cellular insights. In: Tappia PS, Ramjiawan B, Dhalla NS (eds) Cellular and biochemical mechanisms of obesity. Springer, Cham, pp 313–335

    Chapter  Google Scholar 

  21. Turan B, Billur D, Olgar Y (2019) Zinc signaling in aging heart function. In: Kambe T, Fukada T (eds) Zinc signaling. Springer, Cham, pp 139–164

    Chapter  Google Scholar 

  22. Ferrannini G, Savarese G, Rydén L (2021) Sodium-glucose transporter inhibition in heart failure: from an unexpected side effect to a novel treatment possibility. Diabetes Res Clin Pract 175:108796

    Article  CAS  PubMed  Google Scholar 

  23. Cowie MR, Fisher M (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17:761–772

    Article  CAS  PubMed  Google Scholar 

  24. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B (2018) A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 17:144. https://doi.org/10.1186/s12933-018-0790-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saotome M, Ikoma T, Hasan P, Maekawa Y (2019) Cardiac insulin resistance in heart failure: the role of mitochondrial dynamics. Int J Mol Sci 20:3552

    Article  CAS  PubMed Central  Google Scholar 

  26. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 17:1–14

    Article  Google Scholar 

  27. Guo CA, Guo S (2017) Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J Endocrinol 233:R131–R143

    Article  CAS  PubMed  Google Scholar 

  28. Wende AR, Brahma MK, McGinnis GR, Young ME (2017) Metabolic origins of heart failure. Basic Trans Sci 2:297–310

    Google Scholar 

  29. Banerjee D, Biggs ML, Mercer L, Mukamal K, Kaplan R, Barzilay J, Kuller L, Kizer JR, Djousse L, Tracy R (2013) Insulin resistance and risk of incident heart failure: Cardiovascular Health Study. Circulation 6:364–370

    CAS  PubMed  Google Scholar 

  30. Zheng L, Li B, Lin S, Chen L, Li H (2019) Role and mechanism of cardiac insulin resistance in occurrence of heart failure caused by myocardial hypertrophy. Aging (Albany NY) 11:6584–6590. https://doi.org/10.18632/aging.102212

    Article  CAS  Google Scholar 

  31. Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM, Guo S (2013) Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes 62:3887–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Godsland IF, Lecamwasam K, Johnston DG (2011) A systematic evaluation of the insulin resistance syndrome as an independent risk factor for cardiovascular disease mortality and derivation of a clinical index. Metabolism 60:1442–1448

    Article  CAS  PubMed  Google Scholar 

  33. Witteles RM, Fowler MB (2008) Insulin-resistant cardiomyopathy: clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 51:93–102

    Article  CAS  PubMed  Google Scholar 

  34. Durak A, Bitirim CV, Turan B (2020) Titin and CK2alpha are new intracellular targets in acute insulin application-associated benefits on electrophysiological parameters of left ventricular cardiomyocytes from insulin-resistant metabolic syndrome rats. Cardiovasc Drugs Ther 34:487–501. https://doi.org/10.1007/s10557-020-06974-2

    Article  CAS  PubMed  Google Scholar 

  35. Kattel S, Kasai T, Matsumoto H, Yatsu S, Murata A, Kato T, Suda S, Hiki M, Takagi A, Daida H (2017) Association between elevated blood glucose level on admission and long-term mortality in patients with acute decompensated heart failure. J Cardiol 69:619–624

    Article  PubMed  Google Scholar 

  36. Wang CCL, Hess CN, Hiatt WR, Goldfine AB (2016) Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes–mechanisms, management, and clinical considerations. Circulation 133:2459

    Article  Google Scholar 

  37. Stranders I, Diamant M, van Gelder RE, Spruijt HJ, Twisk JW, Heine RJ, Visser FC (2004) Admission blood glucose level as risk indicator of death after myocardial infarction in patients with and without diabetes mellitus. Arch Intern Med 164:982–988

    Article  PubMed  Google Scholar 

  38. Verma S, McMurray JJ (2019) The serendipitous story of SGLT2 inhibitors in heart failure: new insights from DECLARE-TIMI 58. Am Heart Assoc 139:2537–2541

    Google Scholar 

  39. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 Inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hansen HH, Jelsing J, Hansen CF, Hansen G, Vrang N, Mark M, Klein T, Mayoux E (2014) The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves β-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat. J Pharmacol Exp Ther 350:657–664

    Article  PubMed  Google Scholar 

  41. Lee T-M, Chang N-C, Lin S-Z (2017) Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radical Biol Med 104:298–310

    Article  CAS  Google Scholar 

  42. Plosker GL (2012) Dapagliflozin. Drugs 72:2289–2312

    Article  CAS  PubMed  Google Scholar 

  43. Lamos EM, Younk LM, Davis SN (2013) Canagliflozin, an inhibitor of sodium–glucose cotransporter 2, for the treatment of type 2 diabetes mellitus. Expert Opin Drug Metab Toxicol 9:763–775

    Article  CAS  PubMed  Google Scholar 

  44. Scheen A, Paquot N (2014) Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: a review of the clinical evidence. Diabetes Metab 40:S4–S11

    Article  CAS  PubMed  Google Scholar 

  45. Saeed MA, Narendran P (2014) Dapagliflozin for the treatment of type 2 diabetes: a review of the literature. Drug Des Dev Ther 8:2493

    Google Scholar 

  46. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    Article  CAS  PubMed  Google Scholar 

  47. Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8:143–164

    Article  PubMed  PubMed Central  Google Scholar 

  48. Refaie MR, Sayed-Ahmed NA, Bakr AM, Aziz MYA, El Kannishi MH, Abdel-Gawad SS (2006) Aging is an inevitable risk factor for insulin resistance. J Taibah Univ Med Sci 1:30–41

    Google Scholar 

  49. Bhashyam S, Parikh P, Bolukoglu H, Shannon AH, Porter JH, Shen Y-T, Shannon RP (2007) Aging is associated with myocardial insulin resistance and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol 293:H3063–H3071

    Article  CAS  PubMed  Google Scholar 

  50. Veronica G, Esther RR (2012) Aging, metabolic syndrome and the heart. Aging Dis 3:269–279

    PubMed  PubMed Central  Google Scholar 

  51. Sheu WH-H, Jeng C-Y, Young MS, Lee W-J, Chen Y-T (2000) Coronary artery disease risk predicted by insulin resistance, plasma lipids, and hypertension in people without diabetes. Am J Med Sci 319:84–88

    Article  CAS  PubMed  Google Scholar 

  52. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27:65–75

    Article  PubMed  Google Scholar 

  53. Khalaf KI, Taegtmeyer H (2012) After avandia: the use of antidiabetic drugs in patients with heart failure. Tex Heart Inst J 39:174

    PubMed  PubMed Central  Google Scholar 

  54. Saotome M, Ikoma T, Hasan P, Maekawa Y (2019) Cardiac insulin resistance in heart failure: the role of mitochondrial dynamics. Int J Mol Sci. https://doi.org/10.3390/ijms20143552

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ferrannini E, Solini A (2012) SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol 8:495–502

    Article  CAS  PubMed  Google Scholar 

  56. Heerspink H, Perkins B, Fitchett D, Husain M, Cherney D (2016) CAS: 528: DC% 2BC28XhsVOit7vL: sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–772

    Article  CAS  PubMed  Google Scholar 

  57. Lopaschuk GD, Verma S (2020) Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci 5:632–644. https://doi.org/10.1016/j.jacbts.2020.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mann PA, Lehrke M (2021) Cardiac substrate utilization in heart failure: where is the relevance of SGLT2 inhibition? J Thoracic Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2021.02.092

    Article  Google Scholar 

  59. Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M (1999) T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48:1794–1800

    Article  CAS  PubMed  Google Scholar 

  60. Han S, Hagan DL, Taylor JR, Xin L, Meng W, Biller SA, Wetterau JR, Washburn WN, Whaley JM (2008) Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57:1723–1729. https://doi.org/10.2337/db07-1472

    Article  CAS  PubMed  Google Scholar 

  61. Lahnwong S, Chattipakorn SC, Chattipakorn N (2018) Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors. Cardiovasc Diabetol 17:101. https://doi.org/10.1186/s12933-018-0745-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hammoudi N, Jeong D, Singh R, Farhat A, Komajda M, Mayoux E, Hajjar R, Lebeche D (2017) Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther 31:233–246. https://doi.org/10.1007/s10557-017-6734-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lambert AA, Lam JO, Paik JJ, Ugarte-Gil C, Drummond MB, Crowell TA (2015) Risk of community-acquired pneumonia with outpatient proton-pump inhibitor therapy: a systematic review and meta-analysis. PLoS ONE 10:e0128004. https://doi.org/10.1371/journal.pone.0128004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, Dollet L, Le May C, Toumaniantz G, Manrique A, Charpentier F, Staels B, Magre J, Cariou B, Prieur X (2017) The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes 66:1030–1040. https://doi.org/10.2337/db16-0733

    Article  CAS  PubMed  Google Scholar 

  65. Younis F, Leor J, Abassi Z, Landa N, Rath L, Hollander K, Naftali-Shani N, Rosenthal T (2018) Beneficial effect of the SGLT2 inhibitor empagliflozin on glucose homeostasis and cardiovascular parameters in the Cohen Rosenthal Diabetic Hypertensive (CRDH) rat. J Cardiovasc Pharmacol Ther 23:358–371. https://doi.org/10.1177/1074248418763808

    Article  CAS  PubMed  Google Scholar 

  66. Kusaka H, Koibuchi N, Hasegawa Y, Ogawa H, Kim-Mitsuyama S (2016) Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc Diabetol 15:157. https://doi.org/10.1186/s12933-016-0473-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsai KF, Chen YL, Chiou TT, Chu TH, Li LC, Ng HY, Lee WC, Lee CT (2021) Emergence of SGLT2 inhibitors as powerful antioxidants in human diseases. Antioxidants (Basel). https://doi.org/10.3390/antiox10081166

    Article  PubMed Central  Google Scholar 

  68. Lambadiari V, Thymis J, Kouretas D, Skaperda Z, Tekos F, Kousathana F, Kountouri A, Balampanis K, Parissis J, Andreadou I, Tsoumani M, Chania C, Katogiannis K, Dimitriadis G, Bamias A, Ikonomidis I (2021) Effects of a 12-month treatment with glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, and their combination on oxidant and antioxidant biomarkers in patients with type 2 diabetes. Antioxidants (Basel). https://doi.org/10.3390/antiox10091379

    Article  Google Scholar 

  69. Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029. https://doi.org/10.1001/jamacardio.2017.2275

    Article  PubMed  Google Scholar 

  70. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Wang X, Liang G, Li X, Jiang C, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2018) FGF21 and DPP-4 inhibitor equally prevents cognitive decline in obese rats. Biomed Pharmacother 97:1663–1672. https://doi.org/10.1016/j.biopha.2017.12.021

    Article  CAS  PubMed  Google Scholar 

  71. Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, Zuurbier CJ (2017) Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia 60:568–573. https://doi.org/10.1007/s00125-016-4134-x

    Article  CAS  PubMed  Google Scholar 

  72. Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, Jancev M, Hollmann MW, Weber NC, Coronel R, Zuurbier CJ (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia 61:722–726. https://doi.org/10.1007/s00125-017-4509-7

    Article  CAS  PubMed  Google Scholar 

  73. Croteau D, Luptak I, Chambers JM, Hobai I, Panagia M, Pimentel DR, Siwik DA, Qin F, Colucci WS (2021) Effects of sodium-glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. J Am Heart Assoc 10:e019995. https://doi.org/10.1161/JAHA.120.019995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, Flores E, Garcia-Ropero A, Sanz J, Hajjar RJ (2019) Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol 73:1931–1944

    Article  CAS  PubMed  Google Scholar 

  75. Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA (2018) Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol 116:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Becher PM, Schrage B, Ferrannini G, Benson L, Butler J, Carrero JJ, Cosentino F, Dahlstrom U, Mellbin L, Rosano GMC, Sinagra G, Stolfo D, Lund LH, Savarese G (2021) Use of sodium-glucose co-transporter 2 inhibitors in patients with heart failure and type 2 diabetes mellitus: data from the Swedish Heart Failure Registry. Eur J Heart Fail 23:1012–1022. https://doi.org/10.1002/ejhf.2131

    Article  CAS  PubMed  Google Scholar 

  77. Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M (2018) Diabetic cardiomyopathy: current and future therapies. Beyond Glycemic Control Front Physiol 9:1514. https://doi.org/10.3389/fphys.2018.01514

    Article  PubMed  Google Scholar 

  78. Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, Nadal-Ginard B, Torella D, Ellison GM (2014) The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J 35:2722–2731. https://doi.org/10.1093/eurheartj/ehs338

    Article  CAS  PubMed  Google Scholar 

  79. Lakatta EG, Sollott SJ, Pepe S (2001) The old heart: operating on the edge. Novartis Found Symp 235:172–196. https://doi.org/10.1002/0470868694.ch15 (Discussion 196–201, 217–220)

    Article  CAS  PubMed  Google Scholar 

  80. Lesnefsky EJ, Chen Q, Hoppel CL (2016) Mitochondrial metabolism in aging heart. Circ Res 118:1593–1611. https://doi.org/10.1161/CIRCRESAHA.116.307505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chason KD, Jaspers I, Parker J, Sellers S, Brighton LE, Hunsucker SA, Armistead PM, Fischer WA 2nd (2018) Age-associated changes in the respiratory epithelial response to influenza infection. J Gerontol A 73:1643–1650. https://doi.org/10.1093/gerona/gly126

    Article  CAS  Google Scholar 

  82. Boudina S (2013) Cardiac aging and insulin resistance: could insulin/insulin-like growth factor (IGF) signaling be used as a therapeutic target? Curr Pharm Des 19:5684–5694. https://doi.org/10.2174/1381612811319320004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van Noord C, Sturkenboom MC, Straus SM, Hofman A, Kors JA, Witteman JC, Stricker BH (2010) Serum glucose and insulin are associated with QTc and RR intervals in nondiabetic elderly. Eur J Endocrinol 162:241–248. https://doi.org/10.1530/EJE-09-0878

    Article  CAS  PubMed  Google Scholar 

  84. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038. https://doi.org/10.1001/jama.241.19.2035

    Article  CAS  PubMed  Google Scholar 

  85. Beaglehole R, Bonita R (2008) Global public health: a scorecard. Lancet 372:1988–1996. https://doi.org/10.1016/S0140-6736(08)61558-5

    Article  PubMed  Google Scholar 

  86. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P, American Heart Association Statistics C and Stroke Statistics S (2006) Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and stroke statistics subcommittee. Circulation 113:e85-151. https://doi.org/10.1161/CIRCULATIONAHA.105.171600

    Article  PubMed  Google Scholar 

  87. Booth GL, Kapral MK, Fung K, Tu JV (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368:29–36. https://doi.org/10.1016/S0140-6736(06)68967-8

    Article  PubMed  Google Scholar 

  88. Rugg SS, Bailey AL, Browning SR (2008) Preventing cardiovascular disease in Kentucky: epidemiology, trends, and strategies for the future. J Ky Med Assoc 106:149–161

    PubMed  Google Scholar 

  89. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes C, Complications Trial/Epidemiology of Diabetes I and Complications Study Research G (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653. https://doi.org/10.1056/NEJMoa052187

    Article  PubMed  Google Scholar 

  90. Malmberg K, Rydén L, Wedel H, Birkeland K, Bootsma A, Dickstein K, Efendic S, Fisher M, Hamsten A, Herlitz J (2005) Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 26:650–661

    Article  CAS  PubMed  Google Scholar 

  91. Nauck M, Wollschläger D, Werner J, Holst J, Ørskov C, Creutzfeldt W, Willms B (1996) Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 39:1546–1553

    Article  CAS  PubMed  Google Scholar 

  92. Egan JM, Meneilly GS, Habener JF, Elahi D (2002) Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab 87:3768–3773

    Article  CAS  PubMed  Google Scholar 

  93. Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D, Porter L, D-S Group (2008) Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372:1240–1250

    Article  CAS  PubMed  Google Scholar 

  94. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G, SS Group (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care 29:2638–2643

    Article  CAS  PubMed  Google Scholar 

  95. Rizzo M, Rizvi AA, Spinas GA, Rini GB, Berneis K (2009) Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors. Expert Opin Investig Drugs 18:1495–1503

    Article  CAS  PubMed  Google Scholar 

  96. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz S-S, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor–dependent and–independent pathways. Circulation 117:2340–2350

    Article  CAS  PubMed  Google Scholar 

  97. Chang G, Liu J, Qin S, Jiang Y, Zhang P, Yu H, Lu K, Zhang N, Cao L, Wang Y (2018) Cardioprotection by exenatide: a novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. Int J Mol Med 41:1693–1703

    CAS  PubMed  Google Scholar 

  98. Barale C, Buracco S, Cavalot F, Frascaroli C, Guerrasio A, Russo I (2017) Glucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation. Thromb Haemost 117:1115–1128

    Article  PubMed  PubMed Central  Google Scholar 

  99. Huang J-H, Chen Y-C, Lee T-I, Kao Y-H, Chazo T-F, Chen S-A, Chen Y-J (2016) Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes. Peptides 78:91–98

    Article  CAS  PubMed  Google Scholar 

  100. Ang R, Mastitskaya S, Hosford PS, Basalay M, Specterman M, Aziz Q, Li Y, Orini M, Taggart P, Lambiase PD (2018) Modulation of cardiac ventricular excitability by GLP-1 (glucagon-like peptide-1). Circulation 11:e006740

    CAS  PubMed  Google Scholar 

  101. Curtis L, Humayun MA, Walker J, Hampton K, Partridge H (2016) Addition of SGLT2 inhibitor to GLP-1 agonist therapy in people with type 2 diabetes and suboptimal glycaemic control. Practical Diabetes 33:129–132

    Article  Google Scholar 

  102. Burgmaier M, Heinrich C, Marx N (2013) Cardiovascular effects of GLP-1 and GLP-1-based therapies: implications for the cardiovascular continuum in diabetes? Diabet Med 30:289–299

    Article  CAS  PubMed  Google Scholar 

  103. Ravassa S, Zudaire A, Díez J (2012) Glucagon-like peptide 1 and cardiac cell survival. Endocrinología y Nutrición (English Edition) 59:561–569

    Article  CAS  Google Scholar 

  104. Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD (2010) Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis 212:217–222

    Article  CAS  PubMed  Google Scholar 

  105. Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P, Hale PM, Zdravkovic M, Blonde L, Investigators L-S (2009) Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+ TZD). Diabetes Care 32:1224–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Scott R, Wu M, Sanchez M, Stein P (2007) Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy over 12 weeks in patients with type 2 diabetes. Int J Clin Pract 61:171–180

    Article  CAS  PubMed  Google Scholar 

  107. Matikainen N, Mänttäri S, Schweizer A, Ulvestad A, Mills D, Dunning BE, Foley JE, Taskinen M-R (2006) Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 49:2049–2057

    Article  CAS  PubMed  Google Scholar 

  108. Nauck M, Vardarli I, Deacon C, Holst J, Meier J (2011) Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 54:10–18

    Article  CAS  PubMed  Google Scholar 

  109. Li L, El-Kholy W, Rhodes C, Brubaker P (2005) Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B. Diabetologia 48:1339–1349

    Article  CAS  PubMed  Google Scholar 

  110. Tomas E, Stanojevic V, Habener JF (2011) GLP-1-derived nonapeptide GLP-1 (28–36) amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul Pept 167:177–184

    Article  CAS  PubMed  Google Scholar 

  111. Ussher JR, Drucker DJ (2012) Cardiovascular biology of the incretin system. Endocr Rev 33:187–215

    Article  CAS  PubMed  Google Scholar 

  112. Yoon JS, Lee HW (2011) Understanding the cardiovascular effects of incretin. Diabetes Metab J 35:437–443. https://doi.org/10.4093/dmj.2011.35.5.437

    Article  PubMed  PubMed Central  Google Scholar 

  113. Anagnostis P, Athyros V, Adamidou F, Panagiotou A, Kita M, Karagiannis A, Mikhailidis D (2011) Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab 13:302–312

    Article  CAS  PubMed  Google Scholar 

  114. Plutzky J (2011) The incretin axis in cardiovascular disease. Am Heart Assoc 124:2285–2289

    Google Scholar 

  115. Bullock BP, Heller RS, Habener JF (1996) Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968–2978

    Article  CAS  PubMed  Google Scholar 

  116. Wei Y, Mojsov S (1995) Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 358:219–224

    Article  CAS  PubMed  Google Scholar 

  117. Ku H-C, Chen W-P, Su M-J (2011) DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 384:197–207

    Article  CAS  PubMed  Google Scholar 

  118. Bai X-J, Hao J-T, Zheng R-H, Yan C-P, Wang J, Yang C-H, Zhang W-F, Zhao Z-Q (2021) Glucagon-like peptide-1 analog liraglutide attenuates pressure-overload induced cardiac hypertrophy and apoptosis through activating ATP sensitive potassium channels. Cardiovasc Drugs Ther 35:87–101

    Article  CAS  PubMed  Google Scholar 

  119. Zhang L, Tian J, Diao S, Zhang G, Xiao M, Chang D (2020) GLP-1 receptor agonist liraglutide protects cardiomyocytes from IL-1β-induced metabolic disturbance and mitochondrial dysfunction. Chem Biol Interact 332:109252

    Article  CAS  PubMed  Google Scholar 

  120. Chen J, Wang D, Wang F, Shi S, Chen Y, Yang B, Tang Y, Huang C (2017) Exendin-4 inhibits structural remodeling and improves Ca(2+) homeostasis in rats with heart failure via the GLP-1 receptor through the eNOS/cGMP/PKG pathway. Peptides 90:69–77. https://doi.org/10.1016/j.peptides.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  121. Xiong Q-F, Fan S-H, Li X-W, Niu Y, Wang J, Zhang X, Chen Y-F, Shi Y-W, Zhang L-H (2019) GLP-1 relaxes rat coronary arteries by enhancing ATP-sensitive potassium channel currents. Cardiol Res Pract. https://doi.org/10.1155/2019/1968785

    Article  PubMed  PubMed Central  Google Scholar 

  122. Durak A, Akkus E, Canpolat AG, Tuncay E, Corapcioglu D, Turan B (2022) Glucagon-like peptide-1 receptor agonist treatment of high carbohydrate intake-induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca2+ abnormalities and mitochondrial dysfunction. Clin Exp Pharmacol Physiol 49:46–59

    Article  CAS  PubMed  Google Scholar 

  123. Marzioni M, Alpini G, Saccomanno S, Candelaresi C, Venter J, Rychlicki C, Fava G, Francis H, Trozzi L, Benedetti A (2009) Exendin-4, a glucagon-like peptide 1 receptor agonist, protects cholangiocytes from apoptosis. Gut 58:990–997

    Article  CAS  PubMed  Google Scholar 

  124. MacDonald PE, Salapatek AMF, Wheeler MB (2002) Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K+ currents in β-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51:S443–S447

    Article  CAS  PubMed  Google Scholar 

  125. Gaisano G, Park s J, Daly D, Beyak M (2010) Glucagon-like peptide-1 inhibits voltage-gated potassium currents in mouse nodose ganglion neurons. Neurogastroenterol Motil 22:470-e111

    Article  CAS  PubMed  Google Scholar 

  126. Gill A, Hoogwerf BJ, Burger J, Bruce S, MacConell L, Yan P, Braun D, Giaconia J, Malone J (2010) Effect of exenatide on heart rate and blood pressure in subjects with type 2 diabetes mellitus: a double-blind, placebo-controlled, randomized pilot study. Cardiovasc Diabetol 9:1–7

    Article  Google Scholar 

  127. Kristensen J, Mortensen UM, Schmidt M, Nielsen PH, Nielsen TT, Maeng M (2009) Lack of cardioprotection from subcutaneously and preischemic administered liraglutide in a closed chest porcine ischemia reperfusion model. BMC Cardiovasc Disord 9:1–8

    Article  Google Scholar 

  128. Ly LD, Xu S, Choi S-K, Ha C-M, Thoudam T, Cha S-K, Wiederkehr A, Wollheim CB, Lee I-K, Park K-S (2017) Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 49:e291–e291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn(2+) release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66:1346–1358. https://doi.org/10.2337/db16-1099

    Article  CAS  PubMed  Google Scholar 

  130. Gorlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271. https://doi.org/10.1016/j.redox.2015.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lambadiari V, Pavlidis G, Kousathana F, Varoudi M, Vlastos D, Maratou E, Georgiou D, Andreadou I, Parissis J, Triantafyllidi H, Lekakis J, Iliodromitis E, Dimitriadis G, Ikonomidis I (2018) Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol 17:8. https://doi.org/10.1186/s12933-017-0646-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang D, Luo P, Wang Y, Li W, Wang C, Sun D, Zhang R, Su T, Ma X, Zeng C (2013) Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism. Diabetes 62:1697–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, Cappola TP, Margulies KB, Drucker DJ (2018) GLP-1 receptor expression within the human heart. Endocrinology 159:1570–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Morales PE, Torres G, Sotomayor-Flores C, Peña-Oyarzún D, Rivera-Mejías P, Paredes F, Chiong M (2014) GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum–mitochondria coupling. Biochem Biophys Res Commun 446:410–416

    Article  CAS  PubMed  Google Scholar 

  135. Ogata M, Iwasaki N, Ide R, Takizawa M, Uchigata Y (2014) GLP-1-related proteins attenuate the effects of mitochondrial membrane damage in pancreatic β cells. Biochem Biophys Res Commun 447:133–138

    Article  CAS  PubMed  Google Scholar 

  136. Ciregia F, Giusti L, Ronci M, Bugliani M, Piga I, Pieroni L, Rossi C, Marchetti P, Urbani A, Lucacchini A (2015) Glucagon-like peptide 1 protects INS-1E mitochondria against palmitate-mediated beta-cell dysfunction: a proteomic study. Mol BioSyst 11:1696–1707

    Article  CAS  PubMed  Google Scholar 

  137. Kang MY, Oh TJ, Cho YM (2015) Glucagon-like peptide-1 increases mitochondrial biogenesis and function in INS-1 rat insulinoma cells. Endocrinol Metab 30:216–220

    Article  CAS  Google Scholar 

  138. Góralska J, Śliwa A, Gruca A, Raźny U, Chojnacka M, Polus A, Solnica B, Malczewska-Malec M (2017) Glucagon-like peptide-1 receptor agonist stimulates mitochondrial bioenergetics in human adipocytes. Acta Biochim Pol 64:423–429

    Article  PubMed  Google Scholar 

  139. Kobara M, Toba H, Nakata T (2021) A glucagon-like peptide 1 analogue protects mitochondria and attenuates hypoxia-reoxygenation injury in cultured cardiomyocytes. J Cardiovasc Pharmacol. https://doi.org/10.1097/FJC.0000000000001218

    Article  Google Scholar 

  140. Patorno E, Pawar A, Bessette LG, Kim DH, Dave C, Glynn RJ, Munshi MN, Schneeweiss S, Wexler DJ, Kim SC (2021) Comparative effectiveness and safety of sodium–glucose cotransporter 2 inhibitors versus glucagon-like peptide 1 receptor agonists in older adults. Diabetes Care 44:826–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, Leone T, Dyck JRB, Ussher JR, Muoio DM, Kelly DP, Lopaschuk GD (2019) Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc Res 115:1606–1616. https://doi.org/10.1093/cvr/cvz045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ban K, Kim K-H, Cho C-K, Sauve M, Diamandis EP, Backx PH, Drucker DJ, Husain M (2010) Glucagon-like peptide (GLP)-1 (9–36) amide-mediated cytoprotection is blocked by exendin (9–39) yet does not require the known GLP-1 receptor. Endocrinology 151:1520–1531

    Article  CAS  PubMed  Google Scholar 

  143. Fernandes GC, Fernandes A, Cardoso R, Penalver J, Knijnik L, Mitrani RD, Myerburg RJ, Goldberger JJ (2021) Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials. Heart Rhythm 18:1098–1105. https://doi.org/10.1016/j.hrthm.2021.03.028

    Article  PubMed  Google Scholar 

  144. Wright AK, Carr MJ, Kontopantelis E, Leelarathna L, Thabit H, Emsley R, Buchan I, Mamas MA, van Staa TP, Sattar N, Ashcroft DM, Rutter MK (2022) Primary prevention of cardiovascular and heart failure events with SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diabetes Care 45:909–918. https://doi.org/10.2337/dc21-1113

    Article  CAS  PubMed  Google Scholar 

  145. Natali A, Nesti L, Trico D, Ferrannini E (2021) Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol 20:196. https://doi.org/10.1186/s12933-021-01385-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Brown E, Heerspink HJL, Cuthbertson DJ, Wilding JPH (2021) SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet 398:262–276. https://doi.org/10.1016/S0140-6736(21)00536-5

    Article  CAS  PubMed  Google Scholar 

  147. Li HL, Lip GYH, Feng Q, Fei Y, Tse YK, Wu MZ, Ren QW, Tse HF, Cheung BY, Yiu KH (2021) Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol 20:100. https://doi.org/10.1186/s12933-021-01293-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kaneto H, Obata A, Kimura T, Shimoda M, Kinoshita T, Matsuoka TA, Kaku K (2021) Unexpected pleiotropic effects of SGLT2 inhibitors: pearls and pitfalls of this novel antidiabetic class. Int J Mol Sci. https://doi.org/10.3390/ijms22063062

    Article  PubMed  PubMed Central  Google Scholar 

  149. Satoh H (2018) Pleiotropic effects of SGLT2 inhibitors beyond the effect on glycemic control. Diabetol Int 9:212–214. https://doi.org/10.1007/s13340-018-0367-x

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lee WC, Chau YY, Ng HY, Chen CH, Wang PW, Liou CW, Lin TK, Chen JB (2019) Empagliflozin protects HK-2 cells from high glucose-mediated injuries via a mitochondrial mechanism. Cells. https://doi.org/10.3390/cells8091085

    Article  PubMed  PubMed Central  Google Scholar 

  151. Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, Yu X, Sun B, Chen L (2019) SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol 18:15. https://doi.org/10.1186/s12933-019-0816-2

    Article  PubMed  PubMed Central  Google Scholar 

  152. Steven S, Oelze M, Hanf A, Kroller-Schon S, Kashani F, Roohani S, Welschof P, Kopp M, Godtel-Armbrust U, Xia N, Li H, Schulz E, Lackner KJ, Wojnowski L, Bottari SP, Wenzel P, Mayoux E, Munzel T, Daiber A (2017) The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol 13:370–385. https://doi.org/10.1016/j.redox.2017.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, Eguchi J, Horiguchi CS, Nishii N, Yamada H, Takei K, Makino H (2014) Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE 9:e100777. https://doi.org/10.1371/journal.pone.0100777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Oshima H, Miki T, Kuno A, Mizuno M, Sato T, Tanno M, Yano T, Nakata K, Kimura Y, Abe K, Ohwada W, Miura T (2019) Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. J Pharmacol Exp Ther 368:524–534. https://doi.org/10.1124/jpet.118.253666

    Article  CAS  PubMed  Google Scholar 

  155. Gager GM, von Lewinski D, Sourij H, Jilma B, Eyileten C, Filipiak K, Hulsmann M, Kubica J, Postula M, Siller-Matula JM (2021) Effects of SGLT2 inhibitors on ion homeostasis and oxidative stress associated mechanisms in heart failure. Biomed Pharmacother 143:112169. https://doi.org/10.1016/j.biopha.2021.112169

    Article  CAS  PubMed  Google Scholar 

  156. Pelletier R, Ng K, Alkabbani W, Labib Y, Mourad N, Gamble JM (2021) Adverse events associated with sodium glucose co-transporter 2 inhibitors: an overview of quantitative systematic reviews. Ther Adv Drug Saf 12:2042098621989134. https://doi.org/10.1177/2042098621989134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Singh M, Kumar A (2018) Risks associated with SGLT2 inhibitors: an overview. Curr Drug Saf 13:84–91. https://doi.org/10.2174/1574886313666180226103408

    Article  CAS  PubMed  Google Scholar 

  158. Scheen AJ (2016) SGLT2 inhibitors: benefit/risk balance. Curr Diab Rep 16:92. https://doi.org/10.1007/s11892-016-0789-4

    Article  CAS  PubMed  Google Scholar 

  159. Wharton S, Davies M, Dicker D, Lingvay I, Mosenzon O, Rubino DM, Pedersen SD (2022) Managing the gastrointestinal side effects of GLP-1 receptor agonists in obesity: recommendations for clinical practice. Postgrad Med 134:14–19. https://doi.org/10.1080/00325481.2021.2002616

    Article  CAS  PubMed  Google Scholar 

  160. Filippatos TD, Panagiotopoulou TV, Elisaf MS (2014) Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud 11:202–230. https://doi.org/10.1900/RDS.2014.11.202

    Article  PubMed  Google Scholar 

  161. Goncalves E, Bell DS (2018) Combination treatment of SGLT2 inhibitors and GLP-1 receptor agonists: symbiotic effects on metabolism and cardiorenal risk. Diabetes Ther 9:919–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chua MWJ (2022) High-dose liraglutide and SGLT2 inhibitor: a promising combination. Clin Practice 12:1–7

    Article  Google Scholar 

  163. Barraclough JY, Patel S, Yu J, Neal B, Arnott C (2021) The role of sodium glucose cotransporter-2 inhibitors in atherosclerotic cardiovascular disease: a narrative review of potential mechanisms. Cells 10:2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

BT: Designed and provided the final approval of the version to be published, AD, YO, and ET: contributed to the overall production of this manuscript. All authors discussed the documents and commented on the manuscript.

Corresponding author

Correspondence to Belma Turan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The manuscript complies to the Ethical Rules applicable for this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, B., Durak, A., Olgar, Y. et al. Comparisons of pleiotropic effects of SGLT2 inhibition and GLP-1 agonism on cardiac glucose intolerance in heart dysfunction. Mol Cell Biochem 477, 2609–2625 (2022). https://doi.org/10.1007/s11010-022-04474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04474-5

Keywords

Navigation