Skip to main content

Advertisement

Log in

Animal models of insulin resistance and heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited, and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF, and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Executive summary: heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121:948–954

    PubMed  Google Scholar 

  2. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G, McNulty SE, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luceri RM, Ip JH (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352:225–237

    CAS  PubMed  Google Scholar 

  3. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549

    CAS  PubMed  Google Scholar 

  4. Garg R, Yusuf S (1995) Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA, J Am Med Assoc 273:1450–1456

    CAS  Google Scholar 

  5. Hjalmarson A, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, Wikstrand J, El Allaf D, Vitovec J, Aldershvile J, Halinen M, Dietz R, Neuhaus KL, Janosi A, Thorgeirsson G, Dunselman PH, Gullestad L, Kuch J, Herlitz J, Rickenbacher P, Ball S, Gottlieb S, Deedwania P (2000) Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA, J Am Med Assoc 283:1295–1302

    CAS  Google Scholar 

  6. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334:1349–1355

    CAS  PubMed  Google Scholar 

  7. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    CAS  PubMed  Google Scholar 

  8. Taylor AL, Ziesche S, Yancy C, Carson P, D’Agostino R Jr, Ferdinand K, Taylor M, Adams K, Sabolinski M, Worcel M, Cohn JN (2004) Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 351:2049–2057

    CAS  PubMed  Google Scholar 

  9. Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP, Jacobsen SJ (2004) Trends in heart failure incidence and survival in a community-based population. JAMA, J Am Med Assoc 292:344–350

    CAS  Google Scholar 

  10. Giamouzis G, Kalogeropoulos A, Georgiopoulou V, Laskar S, Smith AL, Dunbar S, Triposkiadis F, Butler J (2011) Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions. J Card Fail 17:54–75

    PubMed  Google Scholar 

  11. CDC (2007) Centers for disease control and prevention: 2007 national diabetes fact sheet. http://www.cdc.gov/diabetes/pubs/factsheet07.htm

  12. Deckelbaum RJ, Williams CL (2001) Childhood obesity: the health issue. Obes Res 9(Suppl 4):239S–243S

    PubMed  Google Scholar 

  13. Cohen-Solal A, Beauvais F, Logeart D (2008) Heart failure and diabetes mellitus: epidemiology and management of an alarming association. J Card Fail 14:615–625

    PubMed  Google Scholar 

  14. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    CAS  PubMed  Google Scholar 

  15. Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9:193–205

    CAS  PubMed  Google Scholar 

  16. Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346

    CAS  PubMed  Google Scholar 

  17. Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602

    CAS  PubMed  Google Scholar 

  18. Thirone AC, Huang C, Klip A (2006) Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends in endocrinology and metabolism: TEM 17:72–78

    PubMed  Google Scholar 

  19. Petersen KF, Shulman GI (2006) Etiology of insulin resistance. The American journal of medicine 119(5 Suppl 1):S10–S16

    PubMed Central  PubMed  Google Scholar 

  20. Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201–1210

    CAS  PubMed  Google Scholar 

  21. Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, Cai L (2006) Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 113:544–554

    CAS  PubMed  Google Scholar 

  22. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21:362–369

    CAS  Google Scholar 

  24. Tilg H, Moschen AR (2008) Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol Metab TEM 19:371–379

    CAS  Google Scholar 

  25. Fielding BA, Frayn KN (1998) Lipoprotein lipase and the disposition of dietary fatty acids. Br J Nutr 80:495–502

    CAS  PubMed  Google Scholar 

  26. Yu YH, Ginsberg HN (2005) Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ Res 96:1042–1052

    CAS  PubMed  Google Scholar 

  27. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    CAS  PubMed  Google Scholar 

  28. Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419(2):101–109

    CAS  PubMed  Google Scholar 

  29. Boden G, Lebed B, Schatz M, Homko C, Lemieux S (2001) Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50:1612–1617

    CAS  PubMed  Google Scholar 

  30. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2006) Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 55:2277–2285

    CAS  PubMed  Google Scholar 

  31. Roden M (2004) How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 19:92–96 (An international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society)

    CAS  PubMed  Google Scholar 

  32. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. The American journal of cardiology 34:29–34

    CAS  PubMed  Google Scholar 

  33. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB (2004) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27:1879–1884

    PubMed  Google Scholar 

  34. Iribarren C, Karter AJ, Go AS, Ferrara A, Liu JY, Sidney S, Selby JV (2001) Glycemic control and heart failure among adult patients with diabetes. Circulation 103(22):2668–2673

    CAS  PubMed  Google Scholar 

  35. Ingelsson E, Arnlov J, Lind L, Sundstrom J (2006) Metabolic syndrome and risk for heart failure in middle-aged men. Heart 92:1409–1413

    CAS  PubMed  Google Scholar 

  36. Azevedo A, Bettencourt P, Almeida PB, Santos AC, Abreu-Lima C, Hense HW, Barros H (2007) Increasing number of components of the metabolic syndrome and cardiac structural and functional abnormalities–cross-sectional study of the general population. BMC Cardiovasc Disord 7:17

    PubMed Central  PubMed  Google Scholar 

  37. Guazzi M, Brambilla R, Pontone G, Agostoni P, Guazzi MD (2002) Effect of non-insulin-dependent diabetes mellitus on pulmonary function and exercise tolerance in chronic congestive heart failure. Am J Cardiol 89:191–197

    PubMed  Google Scholar 

  38. Domanski M, Krause-Steinrauf H, Deedwania P, Follmann D, Ghali JK, Gilbert E, Haffner S, Katz R, Lindenfeld J, Lowes BD, Martin W, McGrew F, Bristow MR (2003) The effect of diabetes on outcomes of patients with advanced heart failure in the BEST trial. J Am Coll Cardiol 42:914–922

    PubMed  Google Scholar 

  39. Dries DL, Sweitzer NK, Drazner MH, Stevenson LW, Gersh BJ (2001) Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. J Am Coll Cardiol 38:421–428

    CAS  PubMed  Google Scholar 

  40. Amato L, Paolisso G, Cacciatore F, Ferrara N, Ferrara P, Canonico S, Varricchio M, Rengo F (1997) Congestive heart failure predicts the development of non-insulin-dependent diabetes mellitus in the elderly. The Osservatorio Geriatrico Regione Campania Group. Diabetes Metab 23:213–218

    CAS  PubMed  Google Scholar 

  41. Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, Stevenson JC, Coats AJ (1997) Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol 30:527–532

    CAS  PubMed  Google Scholar 

  42. Witteles RM, Fowler MB (2006) Cardiomyopathy of insulin resistance. Heart Fail Clin 2:13–23

    PubMed  Google Scholar 

  43. Uriel N, Naka Y, Colombo PC, Farr M, Pak SW, Cotarlan V, Albu JB, Gallagher D, Mancini D, Ginsberg HN, Jorde UP (2011) Improved diabetic control in advanced heart failure patients treated with left ventricular assist devices. Eur J Heart Fail 13:195–199

    PubMed  Google Scholar 

  44. Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, Kato T, Khan R, Takayama H, Knoll R, Milting H, Chung CS, Jorde U, Naka Y, Mancini DM, Goldberg IJ, Schulze PC (2012) Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125:2844–2853

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Katz AM (2011) Physiology of the heart. Wolters Kluwer Health/Lippincott Williams & Wilkins Health, Philadelphia, PA

    Google Scholar 

  46. Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Investig 115:547–555

    CAS  PubMed  Google Scholar 

  47. Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277

    CAS  PubMed  Google Scholar 

  48. Lautamaki R, Borra R, Iozzo P, Komu M, Lehtimaki T, Salmi M, Jalkanen S, Airaksinen KE, Knuuti J, Parkkola R, Nuutila P (2006) Liver steatosis coexists with myocardial insulin resistance and coronary dysfunction in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 291(2):E282–E290

    CAS  PubMed  Google Scholar 

  49. Russell RR 3rd, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277:H643–H649

    CAS  PubMed  Google Scholar 

  50. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–2196

    PubMed  Google Scholar 

  51. Rasmussen BB, Holmback UC, Volpi E, Morio-Liondore B, Paddon-Jones D, Wolfe RR (2002) Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. J Clin Investig 110:1687–1693

    CAS  PubMed  Google Scholar 

  52. Lopaschuk GD, Folmes CD, Stanley WC (2007) Cardiac energy metabolism in obesity. Circ Res 101:335–347

    CAS  PubMed  Google Scholar 

  53. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    CAS  PubMed  Google Scholar 

  54. Ouwens DM, Diamant M, Fodor M, Habets DD, Pelsers MM, El Hasnaoui M, Dang ZC, van den Brom CE, Vlasblom R, Rietdijk A, Boer C, Coort SL, Glatz JF, Luiken JJ (2007) Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50:1938–1948

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Suzuki J, Shen WJ, Nelson BD, Patel S, Veerkamp JH, Selwood SP, Murphy GM Jr, Reaven E, Kraemer FB (2001) Absence of cardiac lipid accumulation in transgenic mice with heart-specific HSL overexpression. Am J Physiol Endocrinol Metab 281:E857–E866

    CAS  PubMed  Google Scholar 

  56. Ueno M, Suzuki J, Zenimaru Y, Takahashi S, Koizumi T, Noriki S, Yamaguchi O, Otsu K, Shen WJ, Kraemer FB, Miyamori I (2008) Cardiac overexpression of hormone-sensitive lipase inhibits myocardial steatosis and fibrosis in streptozotocin diabetic mice. Am J Physiol Endocrinol Metab 294:E1109–E1118

    CAS  PubMed  Google Scholar 

  57. Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN, Tserng KY, Hoit BD, Ernsberger P, Young ME, Stanley WC (2006) Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol 291:H38–H44

    CAS  PubMed  Google Scholar 

  58. Dey D, Basu D, Roy SS, Bandyopadhyay A, Bhattacharya S (2006) Involvement of novel PKC isoforms in FFA induced defects in insulin signaling. Mol Cell Endocrinol 246:60–64

    CAS  PubMed  Google Scholar 

  59. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 97:1784–1789

    CAS  PubMed  Google Scholar 

  60. Dutka DP, Pitt M, Pagano D, Mongillo M, Gathercole D, Bonser RS, Camici PG (2006) Myocardial glucose transport and utilization in patients with type 2 diabetes mellitus, left ventricular dysfunction, and coronary artery disease. J Am Coll Cardiol 48:2225–2231

    CAS  PubMed  Google Scholar 

  61. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146:5341–5349

    CAS  PubMed  Google Scholar 

  62. Vogel WM, Apstein CS (1988) Effects of alloxan-induced diabetes on ischemia-reperfusion injury in rabbit hearts. Circ Res 62:975–982

    CAS  PubMed  Google Scholar 

  63. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS (2006) Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55:466–473

    CAS  PubMed  Google Scholar 

  64. Mihm MJ, Seifert JL, Coyle CM, Bauer JA (2001) Diabetes related cardiomyopathy time dependent echocardiographic evaluation in an experimental rat model. Life Sci 69:527–542

    CAS  PubMed  Google Scholar 

  65. Rossini AA, Like AA, Chick WL, Appel MC, Cahill GF Jr (1977) Studies of streptozotocin-induced insulitis and diabetes. Proc Natl Acad Sci USA 74:2485–2489

    CAS  PubMed  Google Scholar 

  66. Shiomi T, Tsutsui H, Ikeuchi M, Matsusaka H, Hayashidani S, Suematsu N, Wen J, Kubota T, Takeshita A (2003) Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol 42:165–172

    CAS  PubMed  Google Scholar 

  67. Salem KA, Kosanovic M, Qureshi A, Ljubisavljevic M, Howarth FC (2009) The direct effects of streptozotocin and alloxan on contractile function in rat heart. Pharmacol Res 59:235–241

    CAS  PubMed  Google Scholar 

  68. Lichtenstein AH, Schwab US (2000) Relationship of dietary fat to glucose metabolism. Atherosclerosis 150:227–243

    CAS  PubMed  Google Scholar 

  69. Ouwens DM, Boer C, Fodor M, de Galan P, Heine RJ, Maassen JA, Diamant M (2005) Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia 48:1229–1237

    CAS  PubMed  Google Scholar 

  70. Raher MJ, Thibault HB, Buys ES, Kuruppu D, Shimizu N, Brownell AL, Blake SL, Rieusset J, Kaneki M, Derumeaux G, Picard MH, Bloch KD, Scherrer-Crosbie M (2008) A short duration of high-fat diet induces insulin resistance and predisposes to adverse left ventricular remodeling after pressure overload. Am J Physiol Heart Circ Physiol 295:H2495–H2502

    CAS  PubMed  Google Scholar 

  71. Hintz KK, Aberle NS, Ren J (2003) Insulin resistance induces hyperleptinemia, cardiac contractile dysfunction but not cardiac leptin resistance in ventricular myocytes. Int J Obes Relat Metab Disord 27:1196–1203

    CAS  PubMed  Google Scholar 

  72. Davidoff AJ, Mason MM, Davidson MB, Carmody MW, Hintz KK, Wold LE, Podolin DA, Ren J (2004) Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments. Am J Physiol Endocrinol Metab 286:E718–E724

    CAS  PubMed  Google Scholar 

  73. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10:512–516

    CAS  PubMed  Google Scholar 

  74. Galipeau DM, Yao L, McNeill JH (2002) Relationship among hyperinsulinemia, insulin resistance, and hypertension is dependent on sex. Am J Physiol Heart Circ Physiol 283:H562–H567

    CAS  PubMed  Google Scholar 

  75. Vasdev S, Longerich L, Gill V (2004) Prevention of fructose-induced hypertension by dietary vitamins. Clin Biochem 37:1–9

    CAS  PubMed  Google Scholar 

  76. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922

    CAS  PubMed  Google Scholar 

  77. Zucker LM, Zucker TF (1961) Fatty, a new mutation in the rats. J Hered 52:275–278

    Google Scholar 

  78. Bray GA, York DA (1972) Studies on food intake of genetically obese rats. Am J Physiol 223:176–179

    CAS  PubMed  Google Scholar 

  79. Peterson RG, Shaw WN, Neel MA, Little LA, Eichberg J (1990) Zucker diabetic fatty rat as a model of non-insulin dependent diabetes mellitus. ILAR J 32(3):16–19

    Google Scholar 

  80. R.G.P. (2000) The zucker diabetic fatty rat. Animal models of diabetes. A primer. Harwood Academic Publisher, Newark, NJ

    Google Scholar 

  81. Slieker LJ, Sundell KL, Heath WF, Osborne HE, Bue J, Manetta J, Sportsman JR (1992) Glucose transporter levels in tissues of spontaneously diabetic Zucker fa/fa rat (ZDF/drt) and viable yellow mouse (Avy/a). Diabetes 41:187–193

    CAS  PubMed  Google Scholar 

  82. Bonen A, Holloway GP, Tandon NN, Han XX, McFarlan J, Glatz JF, Luiken JJ (2009) Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats. Am J Physiol Regul Integr Comp Physiol 297:R1202–R1212

    CAS  PubMed  Google Scholar 

  83. Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, Patil S, Youker KA, Taegtmeyer H (2002) Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 51:2587–2595

    CAS  PubMed  Google Scholar 

  84. Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96:7473–7478

    CAS  PubMed  Google Scholar 

  85. Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severson D, Kahn CR, Abel ED (2002) Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Investig 109:629–639

    CAS  PubMed  Google Scholar 

  86. McQueen AP, Zhang D, Hu P, Swenson L, Yang Y, Zaha VG, Hoffman JL, Yun UJ, Chakrabarti G, Wang Z, Albertine KH, Abel ED, Litwin SE (2005) Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density. J Mol Cell Cardiol 39:882–892

    CAS  PubMed  Google Scholar 

  87. Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE (2003) Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol 285:H1261–H1269

    CAS  PubMed  Google Scholar 

  88. Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46:887–894

    CAS  PubMed  Google Scholar 

  89. Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z (2009) Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol 297:H2096–H2108

    CAS  PubMed  Google Scholar 

  90. Epstein PN, Overbeek PA, Means AR (1989) Calmodulin-induced early-onset diabetes in transgenic mice. Cell 58:1067–1073

    CAS  PubMed  Google Scholar 

  91. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, Epstein PN (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 287:E896–E905

    CAS  PubMed  Google Scholar 

  92. Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274:8347–8350

    CAS  PubMed  Google Scholar 

  93. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548

    CAS  PubMed  Google Scholar 

  94. McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S (2003) Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 100:12355–12360

    CAS  PubMed  Google Scholar 

  95. Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, Tham YK, Sapra G, Qin C, Cemerlang N, Boey EJ, Jandeleit-Dahm K, Du XJ, McMullen JR (2012) Enhanced phosphoinositide 3-kinase(p110alpha) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 55:3369–3381

    CAS  PubMed  Google Scholar 

  96. Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62

    CAS  PubMed  Google Scholar 

  97. DeBosch B, Sambandam N, Weinheimer C, Courtois M, Muslin AJ (2006) Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem 281:32841–32851

    CAS  PubMed Central  PubMed  Google Scholar 

  98. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ (2006) Akt1 is required for physiological cardiac growth. Circulation 113:2097–2104

    CAS  PubMed  Google Scholar 

  99. Mazumder PK, O’Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53:2366–2374

    CAS  PubMed  Google Scholar 

  100. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119:85–90

    CAS  PubMed  Google Scholar 

  101. El-Omar MM, Yang ZK, Phillips AO, Shah AM (2004) Cardiac dysfunction in the Goto-Kakizaki rat. A model of type II diabetes mellitus. Basic Res Cardiol 99:133–141

    PubMed  Google Scholar 

  102. Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377:151–155

    CAS  PubMed  Google Scholar 

  103. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C, Quist W, Lowell BB, Ingwall JS, Kahn BB (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Investig 104:1703–1714

    CAS  PubMed  Google Scholar 

  104. Nikolaidis LA, Sturzu A, Stolarski C, Elahi D, Shen YT, Shannon RP (2004) The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy. Cardiovasc Res 61:297–306

    CAS  PubMed  Google Scholar 

  105. Velez M, Gupta RC, Sunkara B, Lanfear DE, Sabbah HN (2012) Insulin resistance develops after the onset of heart failure in dogs (abstr). Circulation 126:A19183

    Google Scholar 

  106. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S (1991) A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 260:H1379–H1384

    CAS  PubMed  Google Scholar 

  107. Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC, Fisher EA, Dansky H, McClain DA, McIndoe R, Wassef MK, Rabadan-Diehl C, Goldberg IJ (2007) Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 100:1415–1427

    CAS  PubMed  Google Scholar 

  108. Deibert DC, DeFronzo RA (1980) Epinephrine-induced insulin resistance in man. J Clin Investig 65:717–721

    CAS  PubMed  Google Scholar 

  109. Khoury N, McGill JB (2011) Reduction in insulin sensitivity following administration of the clinically used low-dose pressor, norepinephrine. Diabetes Metab Res Rev 27:604–608

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89:381–410

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by research grant from the National Heart, Lung, and Blood Institute PO1 HL074237-09.

Conflict of interest

Dr. Sabbah has received research grants from the National Heart, Lung, and Blood Institute (PO1 HL074237-09). He is also the co-editor-in-chief of the Heart Failure Reviews. Drs. Velez and Kohli have no financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Sabbah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velez, M., Kohli, S. & Sabbah, H.N. Animal models of insulin resistance and heart failure. Heart Fail Rev 19, 1–13 (2014). https://doi.org/10.1007/s10741-013-9387-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9387-6

Keywords

Navigation