Skip to main content
Log in

NAD+ centric mechanisms and molecular determinants of skeletal muscle disease and aging

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data were included in the manuscript, since the article is a review paper this is not applicable.

References

  1. Dieleman JL, Squires E, Bui AL, Campbell M, Chapin A, Hamavid H, Horst C, Li Z, Matyasz T, Reynolds A, Sadat N, Schneider MT, Murray CJL (2017) Factors associated with increases in US health care spending, 1996–2013. JAMA 318:1668–1678. https://doi.org/10.1001/jama.2017.15927

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalbarczyk M, Mackiewicz-Łyziak J (2019) Physical activity and healthcare costs: projections for Poland in the context of an ageing population. Appl Health Econ Health Policy 17:523–532. https://doi.org/10.1007/s40258-019-00472-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leung E, Wongrakpanich S, Munshi MN (2018) Diabetes management in the elderly. Diabetes Spectr 31:245–253. https://doi.org/10.2337/ds18-0033

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chaturvedi P, Tyagi SC (2018) NAD(+): a big player in cardiac and skeletal muscle remodeling and aging. J Cell Physiol 233:1895–1896. https://doi.org/10.1002/jcp.26014

    Article  CAS  PubMed  Google Scholar 

  5. Yaku K, Okabe K, Nakagawa T (2018) NAD metabolism: implications in aging and longevity. Ageing Res Rev 47:1–17. https://doi.org/10.1016/j.arr.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  6. Tur J, Chapalamadagu KC, Manickam R, Cheng F, Tipparaju SM (2021) Deletion of Kvβ2 (AKR6) attenuates isoproterenol induced cardiac injury with links to solute carrier transporter SLC41a3 and circadian clock genes. Metabolites. https://doi.org/10.3390/metabo11040201

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tur J, Chapalamadugu KC, Katnik C, Cuevas J, Bhatnagar A, Tipparaju SM (2017) Kvβ1.1 (AKR6A8) senses pyridine nucleotide changes in the mouse heart and modulates cardiac electrical activity. Am J Physiol Heart Circ Physiol 312:H571-h583. https://doi.org/10.1152/ajpheart.00281.2016

    Article  PubMed  Google Scholar 

  8. Kilfoil PJ, Chapalamadugu KC, Hu X, Zhang D, Raucci FJ Jr, Tur J, Brittian KR, Jones SP, Bhatnagar A, Tipparaju SM, Nystoriak MA (2019) Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits. J Mol Cell Cardiol 137:93–106. https://doi.org/10.1016/j.yjmcc.2019.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goody MF, Henry CA (2018) A need for NAD+ in muscle development, homeostasis, and aging. Skelet Muscle 8:9. https://doi.org/10.1186/s13395-018-0154-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–754. https://doi.org/10.1038/s41556-018-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723. https://doi.org/10.1016/j.beem.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leung AKL (2017) PARPs. Curr Biol 27:R1256–R1258. https://doi.org/10.1016/j.cub.2017.09.054

    Article  PubMed  Google Scholar 

  13. Lee HC (2012) Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 287:31633–31640. https://doi.org/10.1074/jbc.R112.349464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Covarrubias AJ, Perrone R, Grozio A, Verdin E (2021) NAD(+) metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22:119–141. https://doi.org/10.1038/s41580-020-00313-x

    Article  CAS  PubMed  Google Scholar 

  15. Eleazer R, Fondufe-Mittendorf YN (2021) The multifaceted role of PARP1 in RNA biogenesis. Wiley Interdiscip Rev RNA 12:e1617. https://doi.org/10.1002/wrna.1617

    Article  CAS  PubMed  Google Scholar 

  16. Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A, Raffaelli N, De Flora A, Nencioni A, Bruzzone S (2013) CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 288:25938–25949. https://doi.org/10.1074/jbc.M113.470435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yaku K, Okabe K, Hikosaka K, Nakagawa T (2018) NAD metabolism in cancer therapeutics. Front Oncol 8:622. https://doi.org/10.3389/fonc.2018.00622

    Article  PubMed  PubMed Central  Google Scholar 

  18. Czura AW, Czura CJ (2006) CD38 and CD157: biological observations to clinical therapeutic targets. Mol Med 12:309–311. https://doi.org/10.2119/2007-00006.czura

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Higashida H, Hashii M, Tanaka Y, Matsukawa S, Higuchi Y, Gabata R, Tsubomoto M, Seishima N, Teramachi M, Kamijima T, Hattori T, Hori O, Tsuji C, Cherepanov SM, Shabalova AA, Gerasimenko M, Minami K, Yokoyama S, Munesue SI, Harashima A, Yamamoto Y, Salmina AB, Lopatina O (2019) CD38, CD157, and RAGE as molecular determinants for social behavior. Cells. https://doi.org/10.3390/cells9010062

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (2015) SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348:453–457. https://doi.org/10.1126/science.1258366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenet. https://doi.org/10.1186/s13148-016-0224-3

    Article  Google Scholar 

  22. Walsh ME, Van Remmen H (2016) Emerging roles for histone deacetylases in age-related muscle atrophy. Nutr Healthy Aging 4:17–30. https://doi.org/10.3233/NHA-160005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guarino M, Dufour J-F (2019) Nicotinamide and NAFLD: is there nothing new under the sun? Metabolites. https://doi.org/10.3390/metabo9090180

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen SH, Yu X (2019) Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Nucleic Acids Res 47:1321–1334. https://doi.org/10.1093/nar/gky1202

    Article  CAS  PubMed  Google Scholar 

  25. Bird JG, Zhang Y, Tian Y, Panova N, Barvík I, Greene L, Liu M, Buckley B, Krásný L, Lee JK, Kaplan CD, Ebright RH, Nickels BE (2016) The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature 535:444–447. https://doi.org/10.1038/nature18622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson S, Imai SI (2018) NAD + biosynthesis, aging, and disease. F1000Research. https://doi.org/10.12688/f1000research.12120.1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fletcher RS, Ratajczak J, Doig CL, Oakey LA, Callingham R, Da Silva XG, Garten A, Elhassan YS, Redpath P, Migaud ME, Philp A, Brenner C, Canto C, Lavery GG (2017) Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol Metab 6:819–832. https://doi.org/10.1016/j.molmet.2017.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verdin E (2015) NAD+ in aging, metabolism, and neurodegeneration. Science 350:1208–1213. https://doi.org/10.1126/science.aac4854

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Sauve AA (2016) NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochem Biophys Acta 1864:1787–1800. https://doi.org/10.1016/j.bbapap.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  30. Manickam R, Tur J, Badole SL, Chapalamadugu KC, Sinha P, Wang Z, Russ DW, Brotto M, Tipparaju SM (2022) Nampt activator P7C3 ameliorates diabetes and improves skeletal muscle function modulating cell metabolism and lipid mediators. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.12887

    Article  PubMed  PubMed Central  Google Scholar 

  31. Talbot J, Maves L (2016) Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol 5:518–534. https://doi.org/10.1002/wdev.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bourdeau Julien I, Sephton CF, Dutchak PA (2018) Metabolic networks influencing skeletal muscle fiber composition. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2018.00125

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manickam R, Wahli W (2017) Roles of peroxisome proliferator-activated receptor β/δ in skeletal muscle physiology. Biochimie 136:42–48. https://doi.org/10.1016/j.biochi.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  34. Purves-Smith FM, Sgarioto N, Hepple RT (2014) Fiber typing in aging muscle. Exerc Sport Sci Rev 42:45–52. https://doi.org/10.1249/JES.0000000000000012

    Article  PubMed  Google Scholar 

  35. Wang Y, Pessin JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16:243–250. https://doi.org/10.1097/MCO.0b013e328360272d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE. https://doi.org/10.1371/journal.pone.0042357

    Article  PubMed  PubMed Central  Google Scholar 

  37. Opitz CA, Heiland I (2015) Dynamics of NAD-metabolism: everything but constant. Biochem Soc Trans 43:1127–1132. https://doi.org/10.1042/bst20150133

    Article  CAS  PubMed  Google Scholar 

  38. Agerholm M, Dall M, Jensen BAH, Prats C, Madsen S, Basse AL, Graae A-S, Risis S, Goldenbaum J, Quistorff B, Larsen S, Vienberg SG, Treebak JT (2017) Perturbations of NAD+ salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle. Am J Physiol 314:E377–E395. https://doi.org/10.1152/ajpendo.00213.2017

    Article  CAS  Google Scholar 

  39. White AT, Schenk S (2012) NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol 303:E308–E321. https://doi.org/10.1152/ajpendo.00054.2012

    Article  CAS  Google Scholar 

  40. Ryu KW, Nandu T, Kim J, Challa S, DeBerardinis RJ, Kraus WL (2018) Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis. Science. https://doi.org/10.1126/science.aan5780

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mumford PW, Osburn SC, Fox CD, Godwin JS, Roberts MD (2020) A theacrine-based supplement increases cellular NAD(+) levels and affects biomarkers related to sirtuin activity in C2C12 muscle cells in vitro. Nutrients. https://doi.org/10.3390/nu12123727

    Article  PubMed  PubMed Central  Google Scholar 

  42. Basse AL, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, Altıntaş A, Ehrlich AM, Krag T, Bruzzone S, Dall M, de Guia RM, Jensen JB, Møller AB, Karlsen A, Kjær M, Barrès R, Vissing J, Larsen S, Jessen N, Treebak JT (2021) Nampt controls skeletal muscle development by maintaining Ca(2+) homeostasis and mitochondrial integrity. Mol Metab 53:101271. https://doi.org/10.1016/j.molmet.2021.101271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V (2015) The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183. https://doi.org/10.1016/j.stem.2014.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12:51–62. https://doi.org/10.1016/S1097-2765(03)00226-0

    Article  CAS  PubMed  Google Scholar 

  45. Zhang N, Sauve AA (2018) Regulatory effects of NAD(+) metabolic pathways on sirtuin activity. Prog Mol Biol Transl Sci 154:71–104. https://doi.org/10.1016/bs.pmbts.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  46. Pan H, Finkel T (2017) Key proteins and pathways that regulate lifespan. J Biol Chem 292:6452–6460. https://doi.org/10.1074/jbc.R116.771915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zullo A, Simone E, Grimaldi M, Musto V, Mancini FP (2018) Sirtuins as mediator of the anti-ageing effects of calorie restriction in skeletal and cardiac muscle. Int J Mol Sci. https://doi.org/10.3390/ijms19040928

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014

    Article  CAS  PubMed  Google Scholar 

  49. Samant SA, Kanwal A, Pillai VB, Bao R, Gupta MP (2017) The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep. https://doi.org/10.1038/s41598-017-10838-5

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lombard DB (2009) Sirtuins at the breaking point: SIRT6 in DNA repair. Aging 1:12–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, Bohr VA, Chua KF (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging 1:109–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Cui X, Yao L, Yang X, Gao Y, Fang F, Zhang J, Wang Q, Chang Y (2017) SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. Am J Physiol 313:E493–E505. https://doi.org/10.1152/ajpendo.00122.2017

    Article  CAS  Google Scholar 

  53. Lin L, Chen K, Khalek WA, Ward JL, Yang H, Chabi B, Wrutniak-Cabello C, Tong Q (2014) Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS ONE. https://doi.org/10.1371/journal.pone.0085636

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dittenhafer-Reed KE, Richards AL, Fan J, Smallegan MJ, Siahpirani AF, Kemmerer ZA, Prolla TA, Roy S, Coon JJ, Denu JM (2015) SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab 21:637–646. https://doi.org/10.1016/j.cmet.2015.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Iii JLW, Goodyear LJ, Tong Q (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging 1:771–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem 285:31995–32002. https://doi.org/10.1074/jbc.M110.124164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vargas-Ortiz K, Pérez-Vázquez V, Macías-Cervantes MH (2019) Exercise and sirtuins: a way to mitochondrial health in skeletal muscle. Int J Mol Sci. https://doi.org/10.3390/ijms20112717

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yeo D, Kang C, Ji LL (2020) Aging alters acetylation status in skeletal and cardiac muscles. GeroScience 42:963–976. https://doi.org/10.1007/s11357-020-00171-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mohamed JS, Wilson JC, Myers MJ, Sisson KJ, Alway SE (2014) Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging 6:820–834

    Article  PubMed Central  PubMed  Google Scholar 

  60. Jiang B-H, Tseng W-L, Li H-Y, Wang M-L, Chang Y-L, Sung Y-J, Chiou S-H (2015) Poly(ADP-Ribose) polymerase 1: cellular pluripotency, reprogramming, and tumorogenesis. Int J Mol Sci 16:15531–15545. https://doi.org/10.3390/ijms160715531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Amé J-C, Spenlehauer C, Murcia Gd (2004) The PARP superfamily. BioEssays 26:882–893. https://doi.org/10.1002/bies.20085

    Article  CAS  PubMed  Google Scholar 

  62. Chini EN, Chini CCS, Netto JME, de Oliveira GC, van Schooten W (2018) The pharmacology of CD38/NADase: an emerging target for cancer and aging diseases. Trends Pharmacol Sci 39:424–436. https://doi.org/10.1016/j.tips.2018.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frasca L, Fedele G, Deaglio S, Capuano C, Palazzo R, Vaisitti T, Malavasi F, Ausiello CM (2006) CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood 107:2392–2399. https://doi.org/10.1182/blood-2005-07-2913

    Article  CAS  PubMed  Google Scholar 

  64. Komanetsky SM, Hedrick V, Sobreira T, Aryal UK, Kim SQ, Kim K-H (2020) Proteomic identification of aerobic glycolysis as a potential metabolic target for methylglyoxal in adipocytes. Nutr Res 80:66–77. https://doi.org/10.1016/j.nutres.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  65. Han H-S, Kang G, Kim JS, Choi BH, Koo S-H (2016) Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 48:e218. https://doi.org/10.1038/emm.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brière J-J, Favier J, Gimenez-Roqueplo A-P, Rustin P (2006) Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. Am J Physiol Cell Physiol 291:C1114–C1120. https://doi.org/10.1152/ajpcell.00216.2006

    Article  CAS  PubMed  Google Scholar 

  67. Lee W-C, Ji X, Nissim I, Long F (2020) Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts. Cell Rep 32:108108. https://doi.org/10.1016/j.celrep.2020.108108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith HQ, Li C, Stanley CA, Smith TJ (2019) Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochem Res 44:117–132. https://doi.org/10.1007/s11064-017-2428-0

    Article  CAS  PubMed  Google Scholar 

  69. Minárik P, Tomášková N, Kollárová M, Antalík M (2002) Malate dehydrogenases—structure and function. Gen Physiol Biophys 9:257

    Google Scholar 

  70. Larsson C, Påhlman I-L, Ansell R, Rigoulet M, Adler L, Gustafsson L (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14:347–357. https://doi.org/10.1002/(SICI)1097-0061(19980315)14:4%3c347::AID-YEA226%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  71. Stein LR, Imai S-i (2012) The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 23:420–428. https://doi.org/10.1016/j.tem.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jensen J, Rustad PI, Kolnes AJ, Lai Y-C (2011) The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. https://doi.org/10.3389/fphys.2011.00112

    Article  PubMed  PubMed Central  Google Scholar 

  73. Migliavacca E, Tay SKH, Patel HP, Sonntag T, Civiletto G, McFarlane C, Forrester T, Barton SJ, Leow MK, Antoun E, Charpagne A, Seng Chong Y, Descombes P, Feng L, Francis-Emmanuel P, Garratt ES, Giner MP, Green CO, Karaz S, Kothandaraman N, Marquis J, Metairon S, Moco S, Nelson G, Ngo S, Pleasants T, Raymond F, Sayer AA, Ming Sim C, Slater-Jefferies J, Syddall HE, Fang Tan P, Titcombe P, Vaz C, Westbury LD, Wong G, Yonghui W, Cooper C, Sheppard A, Godfrey KM, Lillycrop KA, Karnani N, Feige JN (2019) Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities. Nat Commun. https://doi.org/10.1038/s41467-019-13694-1

    Article  PubMed  PubMed Central  Google Scholar 

  74. Siegel CS, McCullough LD (2013) NAD+ and nicotinamide: sex differences in cerebral ischemia. Neuroscience 237:223–231. https://doi.org/10.1016/j.neuroscience.2013.01.068

    Article  CAS  PubMed  Google Scholar 

  75. Schwarzmann L, Pliquett RU, Simm A, Bartling B (2021) Sex-related differences in human plasma NAD+/NADH levels depend on age. Biosci Rep. https://doi.org/10.1042/bsr20200340

  76. Echaniz-Laguna A, Mohr M, Lannes B, Tranchant C (2010) Myopathies in the elderly: a hospital-based study. Neuromuscul Disord 20:443–447. https://doi.org/10.1016/j.nmd.2010.05.003

    Article  PubMed  Google Scholar 

  77. Pandey SN, Kesari A, Yokota T, Pandey GS (2015) Muscular dystrophy: disease mechanisms and therapies. Biomed Res Int. https://doi.org/10.1155/2015/456348

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA (2017) NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med 23:899–916. https://doi.org/10.1016/j.molmed.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ryu D, Zhang H, Ropelle ER, Sorrentino V, Mázala DAG, Mouchiroud L, Marshall PL, Campbell MD, Ali AS, Knowels GM, Bellemin S, Iyer SR, Wang X, Gariani K, Sauve AA, Cantó C, Conley KE, Walter L, Lovering RM, Chin ER, Jasmin BJ, Marcinek DJ, Menzies KJ, Auwerx J (2016) NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med 8:361ra139. https://doi.org/10.1126/scitranslmed.aaf5504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sebori R, Kuno A, Hosoda R, Hayashi T, Horio Y (2018) Resveratrol decreases oxidative stress by restoring mitophagy and improves the pathophysiology of dystrophin-deficient mdx mice. Oxid Med Cell Longev. https://doi.org/10.1155/2018/9179270

    Article  PubMed  PubMed Central  Google Scholar 

  81. S-i I, Yoshino J (2013) The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and aging. Diabetes Obes Metab. https://doi.org/10.1111/dom.12171

    Article  Google Scholar 

  82. Mohamed JS, Hajira A, Pardo PS, Boriek AM (2014) MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1α network in skeletal muscle. Diabetes 63:1546–1559. https://doi.org/10.2337/db13-1364

    Article  CAS  PubMed  Google Scholar 

  83. Fan L, Cacicedo JM, Ido Y (2020) Impaired nicotinamide adenine dinucleotide (NAD+) metabolism in diabetes and diabetic tissues: Implications for nicotinamide-related compound treatment. J Diabetes Investig 11:1403–1419. https://doi.org/10.1111/jdi.13303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Frederick DW, Davis JG, Dávila A, Agarwal B, Michan S, Puchowicz MA, Nakamaru-Ogiso E, Baur JA (2015) Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem 290:1546–1558. https://doi.org/10.1074/jbc.M114.579565

    Article  CAS  PubMed  Google Scholar 

  85. Supale S, Li N, Brun T, Maechler P (2012) Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 23:477–487. https://doi.org/10.1016/j.tem.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  86. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Investig 116:1793–1801. https://doi.org/10.1172/JCI29069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wei Y, Chen K, Whaley-Connell AT, Stump CS, Ibdah JA, Sowers JR (2008) Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol 294:R673–R680. https://doi.org/10.1152/ajpregu.00561.2007

    Article  CAS  Google Scholar 

  88. Wu H, Ballantyne CM (2017) Skeletal muscle inflammation and insulin resistance in obesity. J Clin Investig 127:43–54. https://doi.org/10.1172/JCI88880

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jura M, Kozak LP (2016) Obesity and related consequences to ageing. Age. https://doi.org/10.1007/s11357-016-9884-3

    Article  PubMed  PubMed Central  Google Scholar 

  90. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M (2018) Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol 9:1–58. https://doi.org/10.1002/cphy.c170040

    Article  PubMed  PubMed Central  Google Scholar 

  91. Frederick DW, Loro E, Liu L, Davila A, Chellappa K, Silverman IM, Quinn WJ, Gosai SJ, Tichy ED, Davis JG, Mourkioti F, Gregory BD, Dellinger RW, Redpath P, Migaud ME, Nakamaru-Ogiso E, Rabinowitz JD, Khurana TS, Baur JA (2016) Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab 24:269–282. https://doi.org/10.1016/j.cmet.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JRB, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56. https://doi.org/10.1016/j.cmet.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  93. Abdul-Ghani MA, DeFronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. https://doi.org/10.1155/2010/476279

    Article  PubMed  PubMed Central  Google Scholar 

  94. Meo SD, Iossa S, Venditti P (2017) Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 233:R15–R42. https://doi.org/10.1530/JOE-16-0598

    Article  PubMed  Google Scholar 

  95. Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH (2018) SIRT2 knockout exacerbates insulin resistance in high fat-fed mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0208634

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122. https://doi.org/10.1016/j.cell.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  97. Camacho-Pereira J, Tarragó MG, Chini CCS, Nin V, Escande C, Warner GM, Puranik AS, Schoon RA, Reid JM, Galina A, Chini EN (2016) CD38 dictates age-related NAD decline and mitochondrial dysfunction through a SIRT3-dependent mechanism. Cell Metab 23:1127–1139. https://doi.org/10.1016/j.cmet.2016.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barbosa MTP, Soares SM, Novak CM, Sinclair D, Levine JA, Aksoy P, Chini EN (2007) The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J 21:3629–3639. https://doi.org/10.1096/fj.07-8290com

    Article  CAS  PubMed  Google Scholar 

  99. Wang LF, Miao LJ, Wang XN, Huang CC, Qian YS, Huang X, Wang XL, Jin WZ, Ji GJ, Fu M, Deng KY, Xin HB (2018) CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. J Cell Mol Med 22:101–110. https://doi.org/10.1111/jcmm.13297

    Article  CAS  PubMed  Google Scholar 

  100. Carrico C, Meyer JG, He W, Gibson BW, Verdin E (2018) The mitochondrial acylome emerges: proteomics, regulation by sirtuins, metabolic and disease implications. Cell Metab 27:497–512. https://doi.org/10.1016/j.cmet.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hebert SL, Marquet-de Rougé P, Lanza IR, McCrady-Spitzer SK, Levine JA, Middha S, Carter RE, Klaus KA, Therneau TM, Highsmith EW, Nair KS (2015) Mitochondrial aging and physical decline: insights from three generations of women. J Gerontol A 70:1409–1417. https://doi.org/10.1093/gerona/glv086

    Article  CAS  Google Scholar 

  102. Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8:349–369. https://doi.org/10.1002/jcsm.12178

    Article  PubMed  PubMed Central  Google Scholar 

  103. Picca A, Calvani R, Bossola M, Allocca E, Menghi A, Pesce V, Lezza AMS, Bernabei R, Landi F, Marzetti E (2018) Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. Biol Chem 399:421–436. https://doi.org/10.1515/hsz-2017-0331

    Article  CAS  PubMed  Google Scholar 

  104. van de Ven RAH, Santos D, Haigis MC (2017) Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med 23:320–331. https://doi.org/10.1016/j.molmed.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsuda M, Fukushima A, Matsumoto J, Takada S, Kakutani N, Nambu H, Yamanashi K, Furihata T, Yokota T, Okita K, Kinugawa S, Anzai T (2018) Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure. J Cachexia Sarcopenia Muscle 9:844–859. https://doi.org/10.1002/jcsm.12322

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang T, Cao Y, Zheng Q, Tu J, Zhou W, He J, Zhong J, Chen Y, Wang J, Cai R, Zuo Y, Wei B, Fan Q, Yang J, Wu Y, Yi J, Li D, Liu M, Wang C, Zhou A, Li Y, Wu X, Yang W, Chin YE, Chen G, Cheng J (2019) SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell 75:823–834. https://doi.org/10.1016/j.molcel.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  107. Myers MJ, Shepherd DL, Durr AJ, Stanton DS, Mohamed JS, Hollander JM, Alway SE (2019) The role of SIRT1 in skeletal muscle function and repair of older mice. J Cachexia Sarcopenia Muscle 10:929–949. https://doi.org/10.1002/jcsm.12437

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fujiwara D, Iwahara N, Sebori R, Hosoda R, Shimohama S, Kuno A, Horio Y (2019) SIRT1 deficiency interferes with membrane resealing after cell membrane injury. PLoS ONE. https://doi.org/10.1371/journal.pone.0218329

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hitomi K, Okada R, Loo TM, Miyata K, Nakamura AJ, Takahashi A (2020) DNA damage regulates senescence-associated extracellular vesicle release via the ceramide pathway to prevent excessive inflammatory responses. Int J Mol Sci. https://doi.org/10.3390/ijms21103720

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schultz MB, Sinclair DA (2016) Why NAD+ declines during aging: it’s destroyed. Cell Metab 23:965–966. https://doi.org/10.1016/j.cmet.2016.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöop MH (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92:1479–1514. https://doi.org/10.1152/physrev.00022.2011

    Article  CAS  PubMed  Google Scholar 

  112. Hwang J-W, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescene. Free Radic Biol Med 0:95–110. https://doi.org/10.1016/j.freeradbiomed.2013.03.015

    Article  CAS  PubMed Central  Google Scholar 

  113. Fan J, Krautkramer KA, Feldman JL, Denu JM (2015) Metabolic regulation of histone post-translational modifications. ACS Chem Biol 10:95–108. https://doi.org/10.1021/cb500846u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657. https://doi.org/10.1126/science.1170803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a018713

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101. https://doi.org/10.1038/nrm.2016.140

    Article  CAS  PubMed  Google Scholar 

  117. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380. https://doi.org/10.1038/sj.emboj.7600244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. van der Horst A, Tertoolen LGJ, de Vries-Smits LMM, Frye RA, Medema RH, Burgering BMT (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279:28873–28879. https://doi.org/10.1074/jbc.M401138200

    Article  CAS  PubMed  Google Scholar 

  119. Ikenoue T, Inoki K, Zhao B, Guan K-L (2008) PTEN acetylation modulates its interaction with PDZ domain. Cancer Res 68:6908–6912. https://doi.org/10.1158/0008-5472.CAN-08-1107

    Article  CAS  PubMed  Google Scholar 

  120. Yao X-H, Nyomba BLG (2008) Hepatic insulin resistance induced by prenatal alcohol exposure is associated with reduced PTEN and TRB3 acetylation in adult rat offspring. Am J Physiol 294:R1797-1806. https://doi.org/10.1152/ajpregu.00804.2007

    Article  CAS  Google Scholar 

  121. Gujar H, Weisenberger DJ, Liang G (2019) The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. Genes. https://doi.org/10.3390/genes10020172

    Article  PubMed  PubMed Central  Google Scholar 

  122. Turner DC, Gorski PP, Maasar MF, Seaborne RA, Baumert P, Brown AD, Kitchen MO, Erskine RM, Dos-Remedios I, Voisin S, Eynon N, Sultanov RI, Borisov OV, Larin AK, Semenova EA, Popov DV, Generozov EV, Stewart CE, Drust B, Owens DJ, Ahmetov II, Sharples AP (2020) DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Sci Rep. https://doi.org/10.1038/s41598-020-72730-z

    Article  PubMed  PubMed Central  Google Scholar 

  123. Scourzic L, Mouly E, Bernard OA (2015) TET proteins and the control of cytosine demethylation in cancer. Genome Med. https://doi.org/10.1186/s13073-015-0134-6

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zykovich A, Hubbard A, Flynn JM, Tarnopolsky M, Fraga MF, Kerksick C, Ogborn D, MacNeil L, Mooney SD, Melov S (2014) Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell 13:360–366. https://doi.org/10.1111/acel.12180

    Article  CAS  PubMed  Google Scholar 

  125. Livshits G, Gao F, Malkin I, Needhamsen M, Xia Y, Yuan W, Bell CG, Ward K, Liu Y, Wang J, Bell JT, Spector TD (2016) Contribution of heritability and epigenetic factors to skeletal muscle mass variation in United Kingdom twins. J Clin Endocrinol Metab 101:2450–2459. https://doi.org/10.1210/jc.2016-1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bigot A, Duddy WJ, Ouandaogo ZG, Negroni E, Mariot V, Ghimbovschi S, Harmon B, Wielgosik A, Loiseau C, Devaney J, Dumonceaux J, Butler-Browne G, Mouly V, Duguez S (2015) Age-associated methylation suppresses SPRY1, leading to a failure of re-quiescence and loss of the reserve stem cell pool in elderly muscle. Cell Rep 13:1172–1182. https://doi.org/10.1016/j.celrep.2015.09.067

    Article  CAS  PubMed  Google Scholar 

  127. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95. https://doi.org/10.1038/nchembio.1432

    Article  CAS  PubMed  Google Scholar 

  128. Pan Y, Ma P, Liu Y, Li W, Shu Y (2018) Multiple functions of m6A RNA methylation in cancer. J Hematol Oncol. https://doi.org/10.1186/s13045-018-0590-8

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, Adhikari S, Shi Y, Lv Y, Chen Y-S, Zhao X, Li A, Yang Y, Dahal U, Lou X-M, Liu X, Huang J, Yuan W-P, Zhu X-F, Cheng T, Zhao Y-L, Wang X, Danielsen JMR, Liu F, Yang Y-G (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189. https://doi.org/10.1038/cr.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 113:E2047–E2056. https://doi.org/10.1073/pnas.1602883113

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur J-J, Rentmeister A, Gross SS, Pellizzoni L, Debart F, Goodarzi H, Jaffrey SR (2019) FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat Chem Biol 15:340–347. https://doi.org/10.1038/s41589-019-0231-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu W, Feng J, Jiang D, Zhou X, Jiang Q, Cai M, Wang X, Shan T, Wang Y (2017) AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine. Sci Rep. https://doi.org/10.1038/srep41606

    Article  PubMed  PubMed Central  Google Scholar 

  133. Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M (2019) Transcriptome signature of cellular senescence. Nucleic Acids Res 47:7294–7305. https://doi.org/10.1093/nar/gkz555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gheller BJ, Blum JE, Fong EHH, Malysheva OV, Cosgrove BD, Thalacker-Mercer AE (2020) A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. Cell Death Discov. https://doi.org/10.1038/s41420-020-00328-5

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yoshino M, Yoshino J, Kayser BD, Patti GJ, Franczyk MP, Mills KF, Sindelar M, Pietka T, Patterson BW, Imai SI, Klein S (2021) Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 372:1224–1229. https://doi.org/10.1126/science.abe9985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J (2012) The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet induced obesity. Cell Metab 15:838–847. https://doi.org/10.1016/j.cmet.2012.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, Cartwright DM, Oakey L, Burley CV, Jenkinson N, Wilson M, Lucas SJE, Akerman I, Seabright A, Lai Y-C, Tennant DA, Nightingale P, Wallis GA, Manolopoulos KN, Brenner C, Philp A, Lavery GG (2019) Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep 28:1717–1728. https://doi.org/10.1016/j.celrep.2019.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dollerup OL, Chubanava S, Agerholm M, Søndergård SD, Altıntaş A, Møller AB, Høyer KF, Ringgaard S, Stødkilde-Jørgensen H, Lavery GG, Barrès R, Larsen S, Prats C, Jessen N, Treebak JT (2020) Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol 598:731–754. https://doi.org/10.1113/JP278752

    Article  CAS  PubMed  Google Scholar 

  139. Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida K, Yoshino J, Imai S-I (2016) Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24:795–806. https://doi.org/10.1016/j.cmet.2016.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang G, Han T, Nijhawan D, Theodoropoulos P, Naidoo J, Yadavalli S, Mirzaei H, Pieper AA, Ready JM, McKnight SL (2014) P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell 158:1324–1334. https://doi.org/10.1016/j.cell.2014.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Loris ZB, Pieper AA, Dietrich WD (2017) The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol 290:63–73. https://doi.org/10.1016/j.expneurol.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  142. Hua X, Sun DY, Zhang WJ, Fu JT, Tong J, Sun SJ, Zeng FY, Ouyang SX, Zhang GY, Wang SN, Li DJ, Miao CY, Wang P (2021) P7C3-A20 alleviates fatty liver by shaping gut microbiota and inducing FGF21/FGF1, via the AMP-activated protein kinase/CREB regulated transcription coactivator 2 pathway. Br J Pharmacol 178:2111–2130. https://doi.org/10.1111/bph.15008

    Article  CAS  PubMed  Google Scholar 

  143. Tipparaju SM, Badole SL, Chapalamadugu KC, Tur J (2017) Methods and uses of nampt activators for treatment of diabetes, cardiovascular diseases, and symptoms thereof

  144. Nikiforov A, Dölle C, Niere M, Ziegler M (2011) Pathways and subcellular compartmentation of NAD biosynthesis in human cells. J Biol Chem 286:21767–21778. https://doi.org/10.1074/jbc.M110.213298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gulshan M, Yaku K, Okabe K, Mahmood A, Sasaki T, Yamamoto M, Hikosaka K, Usui I, Kitamura T, Tobe K, Nakagawa T (2018) Overexpression of Nmnat3 efficiently increases NAD and NGD levels and ameliorates age-associated insulin resistance. Aging Cell. https://doi.org/10.1111/acel.12798

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L (2018) AMPK in skeletal muscle function and metabolism. Faseb J 32:1741–1777. https://doi.org/10.1096/fj.201700442R

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gowans GJ, Hardie DG (2014) AMPK—a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans 42:71–75. https://doi.org/10.1042/BST20130244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marin TL, Gongol B, Zhang F, Martin M, Johnson DA, Xiao H, Wang Y, Subramaniam S, Chien S, Shyy JY (2017) AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal. https://doi.org/10.1126/scisignal.aaf7478

    Article  PubMed  PubMed Central  Google Scholar 

  149. Thomson DM (2018) The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration. Int J Mol Sci. https://doi.org/10.3390/ijms19103125

    Article  PubMed  PubMed Central  Google Scholar 

  150. Koltai E, Szabo Z, Atalay M, Boldogh I, Naito H, Goto S, Nyakas C, Radak Z (2010) Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 131:21–28. https://doi.org/10.1016/j.mad.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  151. Koltai E, Bori Z, Osvath P, Ihasz F, Peter S, Toth G, Degens H, Rittweger J, Boldogh I, Radak Z (2018) Master athletes have higher miR-7, SIRT3 and SOD2 expression in skeletal muscle than age-matched sedentary controls. Redox Biol 19:46–51. https://doi.org/10.1016/j.redox.2018.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, Larsen S, Brandauer J, Houmard JA, Treebak JT (2019) Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiol Rep. https://doi.org/10.14814/phy2.14139

    Article  PubMed  PubMed Central  Google Scholar 

  153. Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D (2007) SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450:440–444. https://doi.org/10.1038/nature06268

    Article  CAS  PubMed  Google Scholar 

  154. Bosch-Presegué L, Vaquero A (2015) Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 282:1745–1767. https://doi.org/10.1111/febs.13053

    Article  CAS  PubMed  Google Scholar 

  155. Alves-Fernandes DK, Jasiulionis MG (2019) The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20133153

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rifaï K, Judes G, Idrissou M, Daures M, Bignon Y-J, Penault-Llorca F, Bernard-Gallon D (2018) SIRT1-dependent epigenetic regulation of H3 and H4 histone acetylation in human breast cancer. Oncotarget 9:30661–30678. https://doi.org/10.18632/oncotarget.25771

    Article  PubMed  PubMed Central  Google Scholar 

  157. Serrano L, Martínez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, Fondevila D, Muñoz P, Krüger M, Tischfield JA, Vaquero A (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27:639–653. https://doi.org/10.1101/gad.211342.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP / p300-mediated acetylation of histone H3 on lysine 56. Nature 459:113–117. https://doi.org/10.1038/nature07861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang H, Zhang D, Wang Y, Perez-Neut M, Han Z, Zheng YG, Hao Q, Zhao Y (2018) Lysine benzoylation is a histone mark regulated by SIRT2. Nat Commun. https://doi.org/10.1038/s41467-018-05567-w

    Article  PubMed  PubMed Central  Google Scholar 

  160. Luo J, Nikolaev AY, Imai S-i, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107:137–148. https://doi.org/10.1016/S0092-8674(01)00524-4

    Article  CAS  PubMed  Google Scholar 

  161. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606. https://doi.org/10.1016/S0092-8674(00)80521-8

    Article  CAS  PubMed  Google Scholar 

  162. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23. https://doi.org/10.1016/j.gene.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  163. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Zhou J, Zhang W, Ren R, Zhang W, Li Y, Yang J, Hao Y, Yuan T, Yuan G, Wang H, Ju Z, Mao Z, Li J, Qu J, Tang F, Liu G-H (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26:190–205. https://doi.org/10.1038/cr.2016.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tasselli L, Xi Y, Zheng W, Tennen RI, Odrowaz Z, Simeoni F, Li W, Chua KF (2016) SIRT6 deacetylates H3K18Ac at pericentric chromatin to prevent mitotic errors and cell senescence. Nat Struct Mol Biol 23:434–440. https://doi.org/10.1038/nsmb.3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118. https://doi.org/10.1038/nature11043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Imai S-I, Guarente L (2016) It takes two to tango: NAD + and sirtuins in aging/longevity control. npj Aging Mech Dis 2:1–6. https://doi.org/10.1038/npjamd.2016.17

    Article  Google Scholar 

Download references

Disclosures

US Patent: 19A039PR [143], USF disclosure, 19A039 (patent pending).

Funding

SMT and MB are partially supported by NIH Grants—National Institutes of Diabetes, Digestive, and Kidney NIDDK-R01DK119066 (SMT, MB). National Institutes of Aging (NIA) 2-PO1AG039355 (MB), NIA-R01AG056504 (MB), and NIA-R01AG060341 (MB). We are thankful for the generous support from the William Saunders Endowed Chair in geriatric Pharmacotherapy (SMT) at University of South Florida. The George W. and Hazel M. Jay and Evanston Research Endowments (MB) and the University of Texas—Arlington College of Nursing and Health Innovation, Bone-Muscle Research Center (https://www.uta.edu/conhi/research/bmrc/index.php). The opinions expressed in this review are solely the authors’ opinions and conclusions and not represent the official opinions and/or endorsement from National Institutes of Health, USF, or UTA.

Author information

Authors and Affiliations

Authors

Contributions

SMT and MB conceptualized the outline and the basis for review. SW and RM provided the initial draft of sections of text and figures. SMT revised, edited, and provided modifications to the draft. SW, RM, MB, and SMT approved the final version of the paper.

Corresponding author

Correspondence to Srinivas M. Tipparaju.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, S., Manickam, R., Brotto, M. et al. NAD+ centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 477, 1829–1848 (2022). https://doi.org/10.1007/s11010-022-04408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04408-1

Keywords

Navigation