Skip to main content
Log in

Glutamate Dehydrogenase, a Complex Enzyme at a Crucial Metabolic Branch Point

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In-vitro, glutamate dehydrogenase (GDH) catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate (α-KG). GDH is found in all organisms, but in animals is allosterically regulated by a wide array of metabolites. For many years, it was not at all clear why animals required such complex control. Further, in both standard textbooks and some research publications, there has been some controversy as to the directionality of the reaction. Here we review recent work demonstrating that GDH operates mainly in the catabolic direction in-vivo and that the finely tuned network of allosteric regulators allows GDH to meet the varied needs in a wide range of tissues in animals. Finally, we review the progress in using pharmacological agents to activate or inhibit GDH that could impact a wide range of pathologies from insulin disorders to tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hudson RC, Daniel RM (1993) L-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol 106B:767–792

    CAS  Google Scholar 

  2. Frieden C (1965) Glutamate dehydrogenase VI: survey of purine nucleotides and other effects on the enzyme from various sources. J Biol Chem 240:2028–2037

    CAS  PubMed  Google Scholar 

  3. Frieden C (1959) Glutamic dehydrogenase I. The effect of coenzyme on the sedimentation velocity and kinetic mechanism. J Biol Chem 234:809–814

    CAS  PubMed  Google Scholar 

  4. Tomkins GM, Yielding KL, Curran JF (1962) The influence of diethylstilbestrol and adenosine diphosphate on pyridine nucleotide coenzyme binding by glutamic dehydrogenase. J Biol Chem 237:1704–1708

    CAS  PubMed  Google Scholar 

  5. Bailey JS, Bell ET, Bell JE (1982) Regulation of bovine glutamate dehydrogenase. J Biol Chem 257:5579–5583

    CAS  PubMed  Google Scholar 

  6. Sener A, Malaisse WJ (1980) L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288:187–189

    Article  CAS  PubMed  Google Scholar 

  7. Yielding KL, Tomkins GM (1961) An effect of L-leucine and other essential amino acids on the structure and activity of glutamate dehydrogenase. Proc Natl Acad Sci 47:983

    Article  CAS  PubMed  Google Scholar 

  8. Dieter H, Koberstein R, Sund H (1981) Studies of glutamate dehydrogenase: the interaction of ADP, GTP, and NADPH in complexes with glutamate dehydrogenase. Eur J Biochem 115:217–226

    Article  CAS  PubMed  Google Scholar 

  9. Iwatsubo M, Pantaloni D (1967) Regulation De L’ Activite’ De La glutamate dehydrogenase par les effecteurs GTP et ADP: ETUDE par “stopped flow”. Bull Soc Chem Biol 49:1563–1572

    CAS  Google Scholar 

  10. Koberstein R, Sund H (1973) The influence of ADP, GTP and L-glutamate on the binding of the reduced coenzyme to beef-liver glutamate dehydrogenase. Eur J Biochem 36:545–552

    Article  CAS  PubMed  Google Scholar 

  11. Fahien LA, Kmiotek E (1981) Regulation of glutamate dehydrogenase by palmitoyl-coenzyme A. Arch Biochem Biophys 212:247–253

    Article  CAS  PubMed  Google Scholar 

  12. Yielding KL, Tomkins GM, Munday JS, Curran JF (1960) The effects of steroid hormones on the glutamic dehydrogenase reaction. Biochem Biophys Res Comm 2:303–306

    Article  Google Scholar 

  13. Markau K, Schneider J, Sund H (1972) Kinetic studies on the mechanism of the action of ADP on the glutamate dehydrogenase reaction. FEBS Lett 24:32–36

    Article  CAS  PubMed  Google Scholar 

  14. Prough RA, Culver JM, Fisher HF (1973) The mechanism of activation of glutamate dehydrogenase-catalyzed reactions by two different, cooperatively bound activators. J Biol Chem 248:8528–8533

    CAS  PubMed  Google Scholar 

  15. Cross DG, Fisher HF (1970) The mechanism of glutamate dehydrogenase reaction III: the Binding Of Ligands At Multiple Subsites And Resulting Kinetic Effects. J Biol Chem 245:2612–2621

    CAS  PubMed  Google Scholar 

  16. Smith TJ, Bell J (1985) Investigation of the effects of crosslinking glutamate dehydrogenase with dimethylpimelimidate. Arch Biochem Biophys 239:63–73

    Article  CAS  PubMed  Google Scholar 

  17. Couée I, Tipton KF (1989) Activation of glutamate dehydrogenase by L-leucine. Biochim Biophys Acta 995:97–101

    Article  PubMed  Google Scholar 

  18. Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, Xiong G, Chen J, Stokes D, Butt YM, Jones PM, Collins HW, Cohen NA, Cohen AS, Nissim I, Smith TJ, Strauss AW, Matschinsky FM, Bennett MJ, Stanley CA (2010) Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem 285:31806–31818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954

    Article  CAS  PubMed  Google Scholar 

  20. Shashidharan P, Clarke DD, Ahmed N, Moschonas N, Plaitakis A (1997) Nerve tissue-specific human glutamate dehydrogenase that is thermolabile and highly regulated by ADP. Neurochem 68:1804–1811

    Article  CAS  Google Scholar 

  21. Burki F, Kaessmann H (2004) Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 36:1061–1063

    Article  CAS  PubMed  Google Scholar 

  22. Kanavouras K, Mastorodemos V, PBorompokas N, Spanaki C, Plaitakis A (2007) Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific)glutamate dehydrogenase. J Neurosci Res 85:1101–1109

    Article  CAS  PubMed  Google Scholar 

  23. Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A (2005) Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. J Neurosci Res 79:65–73

    Article  CAS  PubMed  Google Scholar 

  24. Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol 87:505–516

    Article  CAS  Google Scholar 

  25. Plaitakis A, Latsoudis H, Spanaki C (2011) The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 59:495–509

    Article  CAS  PubMed  Google Scholar 

  26. Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi IY, Belousov A, Gerhardt GA, Michaelis EK (2009) Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29:13929–13944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peterson PE, Smith TJ (1999) The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Struct Fold Des 7:769–782

    Article  CAS  Google Scholar 

  28. Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley C (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307:707–720

    Article  CAS  PubMed  Google Scholar 

  29. Smith TJ, Schmidt T, Fang J, Wu J, Siuzdak G, Stanley CA (2002) The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318:765–777

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee S, Schmidt T, Fang J, Stanley CA, Smith TJ (2003) Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. BioChemistry 42:3446–3456

    Article  CAS  PubMed  Google Scholar 

  31. Allen A, Kwagh J, Fang J, Stanley CA, Smith TJ (2004) Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. BioChemistry 43:14431–14443

    Article  CAS  PubMed  Google Scholar 

  32. Frieden C (1963) Different structural forms of reversibly dissociated glutamic dehydrogenase: relation between enzymatic activity and molecular weight. Biochem Biophys Res Comm 10:410–415

    Article  CAS  Google Scholar 

  33. Frieden C (1959) Glutamic dehydrogenase II The effect of various nucleotides on the association-disassociation and kinetic properties. J Biol Chem 234:815–819

    CAS  PubMed  Google Scholar 

  34. Shafer JA, Chiancone E, Vittorelli LM, Spagnuolo C, Machler B, Antonini E (1972) Binding of reduced cofactor to glutamate dehydrogenase. Eur J Biochem 31:166–171

    Article  CAS  PubMed  Google Scholar 

  35. Limuti CM (1983) Glutamate dehydrogenase: equilibrium and kinetic studies. Department of Biochemistry, University of Rochester, Rochester

    Google Scholar 

  36. Batra SP, Colman RF (1986) Isolation and identification of cysteinyl peptide labeled by 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5′-diphosphate in the reduced diphosphopyridine nucleotide inhibitory site of glutamate dehydrogenase. BioChemistry 25:3508–3515

    Article  CAS  PubMed  Google Scholar 

  37. Tomita T, Kuzuyama T, Nishiyama M (2011) Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase. J Biol Chem 286:37406–37413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manchester KL (1985) Glutamate dehydrogenase: a reappraisal. Biochem Educ 13:131–132

    Article  CAS  Google Scholar 

  39. Li M, Allen A, Smith TJ (2007) High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors. Biochemistry 46:15089–15102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frieden C (1959) Glutamic dehydrogenase III: the order of substrate addition in the enzymatic reaction. J Biol Chem 234:2891–2896

    CAS  PubMed  Google Scholar 

  41. Lenartowicz E (1990) A complex effet of arsenite on the formation of a-ketoglutarate in rate liver mitochondria. Arch Biochem Biophys 283:388–396

    Article  CAS  PubMed  Google Scholar 

  42. Hoek JB, Rydström J (1988) Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reiss PD, Zuurendonk PF, Veech RL (1984) Measurement of tissue purine, pyrimidine, and other nucleotides by radial compression high-performance liquid chromatography. Anal Biochem 140:162–171

    Article  CAS  PubMed  Google Scholar 

  44. Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E (2000) Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol Cell Physiol 279:C648-657

    Article  Google Scholar 

  45. Sies H, Akerboom TPM, Tager JM (1977) Mitochondria1 and Cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogenesis from ammonia in isolated rat hepatocytes. Eur J Biochem 72:301–307

    Article  CAS  PubMed  Google Scholar 

  46. Botman D, Tigchelaar W, Van Noorden CJF (2014) Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry). J Histochem Cytochem 62:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rémésy C, Demigné C, Fafournoux P (1986) Control of ammonia distribution ratio across the liver cell membrane and of ureogenesis by extracellular pH. Eur J Biochem 158:283–288

    Article  PubMed  Google Scholar 

  48. Cueto-Rojas HF, Seifar RM, ten Pierick A, Heijnen SJ, Wahl A (2016) Accurate measurement of the in vivo ammonium concentration in Saccharomyces cerevisiae. Metabolites 6:12

    Article  CAS  PubMed Central  Google Scholar 

  49. Li C, Najafi H, Daikhin Y, Nissim I, Collins HW, Yudkoff M, Matschinsky FM, Stanley CA (2003) Regulation of leucine stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 278:2853–2858

    Article  CAS  PubMed  Google Scholar 

  50. Li C, Matter A, Kelly A, Petty TJ, Najafi H, MacMullen C, Daikhin Y, Nissim I, Lazarow A, Kwagh J, Collins HW, Hsu BYL, Nissim I, Yudkoff M, Matschinsky FM, Stanley CA (2006) Effects of a GTP-insensitive mutation of glutamate dehydrogenase on insulin secretion in transgenic mice. J Biol Chem 281:15064–15072

    Article  CAS  PubMed  Google Scholar 

  51. Divakaruni AS, Wallace M, Buren C, Martyniuk K, Andreyev AY, Li E, Fields JA, Cordes T, Reynolds IJ, Bloodgood BL, Raymond LA, Metallo CM, Murphy AN (2017) Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. J Cell Biol 216:1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cooper AJL (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37:2439–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Faff-Michalak L, Albrecht J (1993) Hyperammonemia and hepatic encephalopathy stimulate rat cerebral synaptic mitochondrial glutamate dehydrogenase activity specifically in the direction of glutamate oxidation. Brain Res 618:299–302

    Article  CAS  PubMed  Google Scholar 

  54. Cooper AJL, Jeitner TM (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6:16

    Article  CAS  PubMed Central  Google Scholar 

  55. Katagiri M, Nakamura M (2003) Reappraisal of the 20th century version of amino acid metabolism. BBRC 213:205–208

    Google Scholar 

  56. Aubert S, Bligny R, Douce R, Ratcliffe RG, Roberts JKM (2001) Contribution of glutamate dehydrogenase to mitochondrial metabolism studied by 13C and 31P nuclear magnetic resonance. J Exp Bot 52:37–45

    CAS  PubMed  Google Scholar 

  57. Pamiljans V, Krishnaswamy PR, Dumville G, Meister A (1962) Studies on the mechanism of glutamine synthesis; isolation and properties of the enzyme from sheep brain. BioChemistry 1:153–158

    Article  CAS  PubMed  Google Scholar 

  58. McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94:1561–1571

    Article  CAS  PubMed  Google Scholar 

  59. Sener A, Malaisse-Lagae F, Malaisse WJ (1981) Stimulation of pancreatic islet metabolism and insulin release by a nonmetabolizable amino acid. Proc Natl Acad Sci USA 78:5460–5464

    Article  CAS  PubMed  Google Scholar 

  60. Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357

    Article  CAS  PubMed  Google Scholar 

  61. Stanley CA, Fang J, Kutyna K, Hsu BYL, Ming JE, Glaser B, Poncz M (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome of the glutamate dehydrogenase gene. Diabetes 49:667–673

    Article  CAS  PubMed  Google Scholar 

  62. MacMullen C, Fang J, Hsu BYL, Kelly A, deLonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA (2001) The hyperinsulinism/hyperammonemia contributing investigators: hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 86:1782–1787

    CAS  PubMed  Google Scholar 

  63. Hsu BY, Kelly A, Thornton PS, Greenberg CR, Dilling LA, Stanley CA (2001) Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 138:383–389

    Article  CAS  PubMed  Google Scholar 

  64. Li C, Buettger C, Kwagh J, Matter A, Daihkin Y, Nissiam I, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401

    Article  CAS  PubMed  Google Scholar 

  65. Smith TJ, Stanley CA (2008) Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biol Chem 33:557–564

    Article  CAS  Google Scholar 

  66. Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI (2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 5:253–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104:19345–19350

    Article  PubMed  Google Scholar 

  68. Yang C, Sudderth J, Dang T, Bachoo RG, McDonald JG, DeBerardinis RJ (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69:7986–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Komlos D, Mann KD, Zhuo Y, Ricupero CL, Hart RP, Liu AY, Firestein BL (2013) Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia 61:394–408

    Article  PubMed  Google Scholar 

  71. Liu G, Zhu J, Yu M, Cai C, Zhou Y, Yu M, Fu Z, Gong Y, Yang B, Li Y, Zhou Q, Lin Q, Ye H, Ye L, Zhao X, Li Z, Chen R, Han F, Tang C, Zeng B (2015) Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J Transl Med 13:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang H, Ye D, Guan KL, Xiong Y (2012) IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 18:5562–5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LAJ, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen R, Nishimura MC, Kharbanda S, Peale F, Deng Y, Daemen A, Forrest WF, Kwong M, Hedehus M, Hatzivassiliou G, Friedman LS, Phillips HS (2014) Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. PNAS 111:14217–14222

    Article  CAS  PubMed  Google Scholar 

  75. Stanley CA, Baker L (1976) Hyperinsulinism in infants and children: diagnosis and therapy. Adv Pediatr 23:315–355

    CAS  PubMed  Google Scholar 

  76. Li M, Smith CJ, Walker MT, Smith TJ (2009) Novel inhibitors complexed with glutamate dehydrogenase: allosteric regulation by control of protein dynamics. J Biol Chem 284:22988–23000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Konayagi S, Minowada M (1933) On the effect of green tea for diabettes mellitus. Study Physiol 10:449–454

    Google Scholar 

  78. Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85:1038–1049

    Article  CAS  PubMed  Google Scholar 

  79. Maron DJ, Lu GP, Cai NS, Wu ZG, Li YH, Chen H, Zhu JQ, Jin XJ, Wouters BC, Zhao J (2003) Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med 163:1448–1453

    Article  CAS  PubMed  Google Scholar 

  80. Hamilton-Miller JM (1995) Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob Agents Chemother 39:2375–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Katiyar SK, Mukhtar H (1996) Tea in chemoprevention of cancer: epidemiologic and experimental studies. Int J Oncol 8:221–238

    CAS  PubMed  Google Scholar 

  82. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK (2002) Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 277:34933–34940

    Article  CAS  PubMed  Google Scholar 

  83. Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem 50:7182–7186

    Article  CAS  PubMed  Google Scholar 

  84. Li C, Allen A, Kwagh K, Doliba NM, Qin W, Najafi H, Collins HW, Matschinsky FM, Stanley CA, Smith TJ (2006) Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 281:10214–10221

    Article  CAS  PubMed  Google Scholar 

  85. Li C, Li M, Narayan S, Matschinsky FM, Bennet MJ, Stanley CA, Smith TJ (2011) Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem 286:34164–34174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith TJ (2011) Green tea polyphenols in drug discovery: a success or failure? Expert Opin Drug Discov 6:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon S-O, Cantley LC, Blenis J (2010) Glucose addiction of TSC null cells Is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han SJ, Choi S-E, Yi S-A, Lee S-J, Kim HK, Kim DJ, Lee HC, Lee KW, Kang Y (2012) β-Cell-protective effect of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid as a glutamate dehydrogenase activator in db/db mice. J Endocrinol 212:307–315

    Article  CAS  PubMed  Google Scholar 

  89. Thornton PS, Satin-Smith MS, Herold K, Glaser B, Chiu KC, Nestorowicz A, Permutt MA, Baker L, Stanley CA (1998) Familial hyperinsulinism with apparent autosomal dominant inheritance: clinical and genetic differences from the autosomal recessive variant. J Pediatr 132:9–14

    Article  CAS  PubMed  Google Scholar 

  90. Wang Q, Beaumont KA, Otte NJ, Font J, Bailey CG, van Geldermalsen M, Sharp DM, Tiffen JC, Ryan RM, Jormakka M, Haass NK, Rasko JEJ, Holst J (2014) Targeting glutamine transport to suppress melanoma cell growth. Int J of Cancer 135:1060–1071

    Article  CAS  Google Scholar 

  91. Kim CS, Cho SH, Chun HS, Lee SY, Endou H, Kanai Y, Kim DK (2008) BCH, an inhibitor of system L amino acid transporters, induces apoptosis in cancer cells. Biol Pharm Bull 31:1096–1100

    Article  CAS  PubMed  Google Scholar 

  92. Smith HQ, Smith TJ (2016) Identification of a novel activator of mammalian glutamate dehydrogenase. Biochemistry 55:6568–6576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants 1RO1DK098517-01A1 and R01-DK098517-03S1 (C.L.), R37-DK056268 (C.A.S), and R01-DK072171 (T.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas James Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, H.Q., Li, C., Stanley, C.A. et al. Glutamate Dehydrogenase, a Complex Enzyme at a Crucial Metabolic Branch Point. Neurochem Res 44, 117–132 (2019). https://doi.org/10.1007/s11064-017-2428-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2428-0

Keywords

Navigation