Skip to main content
Log in

Oxidative phosphorylation and ion transport in the mitochondria of two strains of rats varying in their resistance to stress and hypoxia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The role of mitochondria in the inherited or ontogenetically acquired reactions of organism to stress is not studied enough. In the present work, we examined the functional state of the coupled respiratory chain, potassium and calcium transport and rate of hydrogen peroxide production on two rat lines: August and Wistar—which possess different resistance to emotional stress and hypoxia. It was established that the respiration rate and efficiency of oxidative phosphorylation were higher in August rats than in Wistar ones. In August rats, the rate of potassium transport and ATP-dependent mitochondrial swelling as well as the concentration of the ion in the mitochondrial matrix were almost twice as higher comparatively to those parameters in Wistar rats. The rate of H2O2 production was found to be decreased in the mitochondria of August rats. It was also demonstrated that the two rat lines differed by their resistance to the opening of the palmitate/Ca2+-induced pore and by their ability to retain calcium within mitochondria. The paper discusses the involvement of the mitochondrial ATP-dependent potassium channel in the adaptation of animals to adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

mitoKATP :

Mitochondrial ATP-dependent K+ channel

DNP:

2,4-Dinitrophenol

ROS:

Reactive oxygen species

MPTP:

Mitochondrial permeability transitions pore

CsA:

Cyclosporine A

PalCap:

Palmitate/Ca2+-induced pore

RCR:

Respiratory control ratio

H2O2 :

Hydrogen peroxide

ARL:

August rat liver

WRL:

Wistar rat liver

References

  1. Lehwald N, Tao GZ, Jang KY, Papandreou I, Liu B, Liu B et al (2012) β-Catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology 143(3):754–764

    Article  PubMed  CAS  Google Scholar 

  2. Liu Y, Kintner DB, Begum G, Algharabli J, Cengiz P, Shull GE, Liu X-J, Sun D (2010) Endoplasmic reticulum Ca2+ signaling and mitochondrial Cyt c release in astrocytes following oxygen and glucose deprivation. J Neurochem 114:1436–1446

    PubMed  CAS  Google Scholar 

  3. Chen X, Kintner DB, Luo J, Baba A, Matsuda T, Sun D (2008) Endoplasmic reticulum Ca2+ dysregulation and endoplasmic reticulum stress following in vitro neuronal ischemia: role of Na+–K+–Cl cotransporter. J Neurochem 106:1563–1576

    Article  PubMed  CAS  Google Scholar 

  4. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  5. Mironova GD, Shigaeva MI, Gritsenko EN, Murzaeva SV, Gorbacheva OS, Germanova EL, Lukyanova LD (2010) Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal’s adaptation to hypoxia. J Bioenerg Biomembr 42:473–481

    Article  PubMed  CAS  Google Scholar 

  6. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  PubMed  CAS  Google Scholar 

  7. Szczepanek K, Chen Q, Larner AC, Lesnefsky EJ (2012) Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion 12:180–189

    Article  PubMed  CAS  Google Scholar 

  8. Chen K, Keaney JF Jr (2012) Evolving concepts of oxidative stress and reactive oxygen species in cardiovascular disease. Curr Atheroscler Rep 14:476–483

    Article  PubMed  CAS  Google Scholar 

  9. Neckár J, Marková I, Novák F, Nováková O, Szárszoi O, Ost’ádal B, Kolár F (2005) Increased expression and altered subcellular distribution of PKC-delta in chronically hypoxic rat myocardium: involvement in cardioprotection. Am J Physiol Heart Circ Physiol 288(4):H1566–H1572

    Article  PubMed  Google Scholar 

  10. Krylova IB, Kachaeva EV, Rodionova OM, Negoda AE, Evdokimova NR, Balina MI, Sapronov NS, Mironova GD (2006) The cardioprotective effect of uridine and uridine-5′-monophosphate: the role of the mitochondrial ATP-dependent potassium channel. Exp Gerontol 41:697–703

    Article  PubMed  CAS  Google Scholar 

  11. Belosludtsev KN, Saris NE, Belosludtseva NV, Trudovishnikov AS, Lukyanova LD, Mironova GD (2009) Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia. J Bioenerg Biomembr 41(4):395–401

    Article  PubMed  CAS  Google Scholar 

  12. Pshennikova MG, Zelenina OM, Kruglov SB, Pokidyshev DA, Shimkovich MV, Malysheva IY (2007) Synthesis of HSP70 in blood leukocytes as a marker of stress resistance during adaptation. Bull Exp Biol Med 144:764–767 (In Russian)

    Article  PubMed  CAS  Google Scholar 

  13. Pshennikova MG, Belkina LM, Bakhtina LY, Baida LA, Smirin BV, Malyshev IY (2001) HSP70 stress proteins, nitric oxide, and resistance of August and Wistar rats to myocardial infarction. Bull Exp Biol Med 132:741–743 (In Russian)

    Article  PubMed  CAS  Google Scholar 

  14. Belkina LM, Kirillina TN, Pshennikova MG, Arkhipenko YV (2002) August rats are more resistant to arrhythmogenic effect of myocardial ischemia and reperfusion than Wistar rats. Bull Exp Biol Med 133:540–543 (In Russian)

    Article  PubMed  CAS  Google Scholar 

  15. Pshennikova MG, Popkova EV, Khomenko IP, Manukhina EB, Goryacheva AV, Mashina SY, Pokidyshev DA, Malyshev IY (2005) Resistance to neurodegenerative brain damage in August and Wistar rats. Bull Exp Biol Med 139:540–542 (In Russian)

    Article  PubMed  CAS  Google Scholar 

  16. Pshennikova MG, Zelenina OM, Kruglov SV, Pokidyshev DA, Shimkovich MV, Malyshev IY (2006) Synthesis of heat shock proteins (HSP70) in blood leukocytes as a criterion of the resistance to stress injury. Bull Exp Biol Med 142:660–662 (In Russian)

    Article  PubMed  CAS  Google Scholar 

  17. Pshennikova MG, Khomenko IP, Kruglov SV, Zelenina OM, Shimkovich MV, Malyshev IY (2008) Specific response of the organism and blood leukocytes in rats of different genetic strains to hypoxia. Bull Exp Biol Med 146:411–414 (In Russian)

    Article  PubMed  CAS  Google Scholar 

  18. Richter C (1984) Hydroperoxide effects on redox state of pyridine nucleotides and Ca2+ retention by mitochondria. Methods Enzymol 105:435–441

    Article  PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  20. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    PubMed  CAS  Google Scholar 

  21. Baranova OV, Skarga YY, Negoda AE, Mironova GD (2000) Inhibition of 2,4-dinitrophenol-induced potassium efflux by adenine nucleotides in mitochondria. Biochemistry (Mosc) 65:218–222

    CAS  Google Scholar 

  22. Stavrovskaia IG, Sirota TV, Saakian IR, Kondrashova MN (1998) Optimization of energy-dependent processes in mitochondria from rat liver and brain after inhalation of negative air ions. Biofizika 43:766–771 (In Russian)

    PubMed  CAS  Google Scholar 

  23. Grover GJ, Garlid KD (2000) ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695

    Article  PubMed  CAS  Google Scholar 

  24. Ferranti R, da Silva MM, Kowaltowski AJ (2003) Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett 536:51–55

    Article  PubMed  CAS  Google Scholar 

  25. Sultan A, Sokolove PM (2001) Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. Arch Biochem Biophys 386:37–51

    Article  PubMed  CAS  Google Scholar 

  26. Mironova GD, Gateau-Roesch O, Levrat C, Gritsenko E, Pavlov E, Lazareva AV, Limarenko E, Rey C, Louisot P, Saris NE (2001) Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. J Bioenerg Biomembr 33:319–331

    Article  PubMed  CAS  Google Scholar 

  27. Mironova GD, Gritsenko E, Gateau-Roesch O, Levrat C, Agafonov A, Belosludtsev K, Prigent AF, Muntean D, Dubois M, Ovize M (2004) Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition. J Bioenerg Biomembr 36:171–178

    Article  PubMed  CAS  Google Scholar 

  28. Blandova ZK, Dushkin VA, Malashenko AM, Shmidt EF (1983) Lines of laboratory animals for biomedical studies. Nauka, Moscow

    Google Scholar 

  29. Berdanier CD, Tobin RB, DeVore V (1979) Studies on the control of lipogenesis: strain differences in hepatic metabolism. J Nutr 109(2):247–260

    PubMed  CAS  Google Scholar 

  30. Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol 280:H649–H657

    PubMed  CAS  Google Scholar 

  31. Cancherini DV, Trabuco LG, Rebouças NA, Kowaltowski AJ (2003) ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol 285:F1291–F1296

    PubMed  CAS  Google Scholar 

  32. Schönfeld P, Gerke S, Bohnensack R, Wojtczak L (2003) Stimulation of potassium cycling in mitochondria by long-chain fatty acids. Biochim Biophys Acta 1604:125–133

    Article  PubMed  Google Scholar 

  33. Lewis KN, Mele J, Hornsby PJ, Buffenstein R (2012) Stress resistance in the naked mole-rat: the bare essentials—a mini-review. Gerontology 58(5):453–462

    Article  PubMed  Google Scholar 

  34. Krylova IB, Bulion VV, Selina EN, Mironova GD, Sapronov NS (2012) Effect of uridine on energy metabolism, LPO, and antioxidant system in the myocardium under conditions of acute coronary insufficiency. Bull Exp Biol Med 153:644–646

    Article  PubMed  CAS  Google Scholar 

  35. Festing MFW (1980) International index of laboratory animals, 4th edn. Medical Research Council Laboratory Animal Centre, Carshalton

    Google Scholar 

  36. Festing MFW (2002) Inbred strains in biomedical research. ATLA 26:283–301

    Google Scholar 

  37. Soboll S (1993) Thyroid hormone action on mitochondrial energy transfer. Biochim Biophys Acta 1144(1):1–16

    Article  PubMed  CAS  Google Scholar 

  38. Baskol G, Atmaca H, Tanriverdi F, Baskol M, Kocer D, Bayram F (2007) Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Exp Clin Endocrinol Diabetes 115:522–526

    Article  PubMed  CAS  Google Scholar 

  39. Moulakakis KG, Poulakou MV, Dosios T, Dontas I, Sokolis DP, Vlachos IS, Safioleas MC, Papachristodoulou A, Karayannacos PE, Perrea DN (2008) Hypothyroidism and the aorta evidence of increased oxidative DNA damage to the aorta of hypothyroid rats. In Vivo 22:603–608

    PubMed  CAS  Google Scholar 

  40. Santi A, Duarte MMMF, Moresco RN, Menezes C, Bagatini MD, Schetinger MRC, Loro VL (2010) Association between thyroid hormones, lipids and oxidative stress biomarkers in overt hypothyroidism. Clin Chem Lab Med 48:1635–1639

    Article  PubMed  CAS  Google Scholar 

  41. Das K, Chainy GB (2001) Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta 1537:1–13

    Article  PubMed  CAS  Google Scholar 

  42. Frascarelli S, Ghelardoni S, Chiellini G, Galli E, Ronca F, Scanlan TS, Zucchi R (2011) Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 25:307–313

    Article  PubMed  CAS  Google Scholar 

  43. O’Rourke B (2000) Myocardial K(ATP) channels in preconditioning. Circ Res 87:845–855

    Article  PubMed  Google Scholar 

  44. Murata M, Akao M, O’Rourke B, Marbán E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Alexey V. Agafonov for corrections which improved the clarity of the manuscript. This work was supported by Russian Foundation for Basic Research No. 12-04-00430a, No. 12-04-32187-mol_a, No. 12-04-31640-mol_a, the Department of the priority directions of science and technology No. 4.3010.2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Venediktova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venediktova, N., Shigaeva, M., Belova, S. et al. Oxidative phosphorylation and ion transport in the mitochondria of two strains of rats varying in their resistance to stress and hypoxia. Mol Cell Biochem 383, 261–269 (2013). https://doi.org/10.1007/s11010-013-1774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1774-8

Keywords

Navigation