Skip to main content
Log in

Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Earlier we found that being added to rat liver mitochondria, palmitic acid (Pal) plus Ca2+ opened a cyclosporin A-insensitive pore, which remained open for a short time. Apparently, this pore is involved in the Pal-induced apoptosis and may also take part in the mitochondrial Ca2+ recycling as a Ca2+ efflux system (Belosludtsev et al. J Bioenerg Biomembr 38:113–120, 2006; Mironova et al. J. Bioenerg. Biomembr. 39:167–174, 2007). In this paper, we continue studying physiological and regulatory aspects of the pore. The following observations have been made. (1) Cardiolipin has been found to facilitate the Ca2+-induced formation of pores in the Pal-containing liposomal membranes. (2) The opening of Pal/Ca2+-induced pore is accompanied by the release of apoptosis-induced factor (AIF) from mitochondria. (3) The rate of Pal/Ca2+-induced swelling of rat liver mitochondria increases substantially with the age of animals. (4) Although the Pal/Ca2+-induced pore opens both in the liver and heart mitochondria, the latter require higher Pal concentrations for the pore to open. (5) The pore opening depends on the resistance of animals to hypoxia: in the highly resistant to hypoxia rats, the mitochondrial Pal/Ca2+-induced pore opens easier than in the low resistant animals, this being opposite for the classical, cyclosporin A-sensitive MPT pore. The adaptation of the low resistant rats to oxygen deficiency increases the sensitivity of their mitochondria to PalCaP inductors. The paper also discusses a possible role of the mitochondrial Pal/Ca2+-induced pore in the protection of tissues against hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agafonov A, Gritsenko E, Belosludtsev K, Kovalev A, Gateau-Roesch O, Saris N-E, Mironova GD (2003) Biochim Biophys Acta 1609:163–160

    Google Scholar 

  • Agafonov AV, Gritsenko EN, Shlyapnikova EA, Belosludtseva NV, Kharakoz DP, Saris N-EL, Mironova GD (2007) J Biol Membr 215(1):57–68

    Article  CAS  Google Scholar 

  • Antonov V, Shevchenko E (1995) Vestn Ross Acad Med Nauk (in Russian) 10:48–55

    Google Scholar 

  • Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Biochemistry (Moscow) 70:815–821

    Article  CAS  Google Scholar 

  • Belosludtsev K, Saris N-EL, Andersson LC, Belosludtseva N, Agafonov A, Sharma A, Moshkov DA, Mironova GD (2006) J Bioenerg Biomembr 38:113–120

    Article  CAS  Google Scholar 

  • Belosludtseva NV, Belosludtsev KN, Agafonov AV, Mironova GD (2009) Biofizika (Russian) 54(3):464–470

    CAS  Google Scholar 

  • Brdiczka DG, Zorov DB, Sheu S (2006) Biochim Biophys Acta 1762:148–163

    CAS  Google Scholar 

  • Brookes PS (2005) Free Radic Biol Med 38(1):12–23

    Article  CAS  Google Scholar 

  • Carreira RS, Miyamoto S, Di Mascio P, Gonçalves LM, Monteiro P, Providencia LA, Kowaltowski AJ (2007) J Bioenerg Biomembr 39:313–320

    Article  CAS  Google Scholar 

  • Daum G (1985) Biophys Acta 822(1):1–42

    CAS  Google Scholar 

  • DeFronzo RA (2004) Int J Clin Pract 58:9–21

    Article  Google Scholar 

  • Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2003) Endocrinology 144(11):5014–5021

    Article  CAS  Google Scholar 

  • Fleischer S, Rouser G, Fleischer B, Casu A, Kritchevsky G (1967) J Lipid Res 8(3):170–80

    CAS  Google Scholar 

  • Garlid K, Dos Santos P, Xie Z, Paucek P (2003) Biochim Biophys Acta 1606(1–3):1–21

    CAS  Google Scholar 

  • Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN (1997) Proc Natl Acad Sci USA 94(7):3064–3069

    Article  CAS  Google Scholar 

  • Hoerter J, Gonzalez-Barroso MD, Couplan E, Mateo P, Gelly C, Cassard-Doulcier AM, Diolez P, Bouillaud F (2004) Circulation 110(5):528–533

    Article  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) FEBS Lett 416(1):15–18

    Article  CAS  Google Scholar 

  • Krylova IB, Kachaeva EV, Rodionova OM, Negoda AE, Evdikimova NR, Balina MI, Sapronov SS, Mironova GD (2006) Exp Gerontology 41:697–703

    Google Scholar 

  • Le-Quoc D, Le-Quoc K (1989) Arch Biochem Biophys 273:466–478

    Article  CAS  Google Scholar 

  • Lopes GS, Mora OA, Cerri P, Faria FP, Jurkiewicz NH, Jurkiewicz A, Smaili SS (2004) Biochem Biophys Acta 1658(3):187–194

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lukyanova LD, Dudchenko AM, Tsybina TA, Germanova EL, Tkachuk EN, Erenburg IV (2007) Bull Exp Biol Med (in Russian) 145:644–651

    Google Scholar 

  • Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Nat Med 9(8):1062–1068

    Article  CAS  Google Scholar 

  • Mironova GD (2007) Adaptation Biol Med 5:105–120

    Google Scholar 

  • Mironova GD, Gateau-Roesch O, Levrat C, Gritsenko E, Pavlov E, Lazareva AV, Limarenko E, Rey P, Louisot P, Saris N-EL (2001) J Bioenerg Biomembr 33:319–331

    Article  CAS  Google Scholar 

  • Mironova GD, Gritsenko E, Gateau-Roesch O, Levrat C, Agafonov A, Belosludtsev K, France-Prigent A, Muntean D, Dubois M, Ovize M (2004) J Bioenerg Biomembr 36:171–178

    Article  CAS  Google Scholar 

  • Mironova GD, Belosludtsev KN, Belosludtseva NV, Gritsenko EN, Khodorov BI, Saris N-EL (2007) J Bioenerg Biomembr 39:167–174

    Article  CAS  Google Scholar 

  • Petit JM, Maftah A, Ratinaud MH, Julien R (1992) Eur J Biochem 209:267–273

    Article  CAS  Google Scholar 

  • Skulachev VP (1998a) FEBS Lett 423:275–280

    Article  CAS  Google Scholar 

  • Skulachev VP (1998b) Biochim Biophys Acta 1363:100–124

    Article  CAS  Google Scholar 

  • Sparagna G, Hickson-Bick D, Buja L, McMillin J (2000) Am J Physiol Heart Circ Physiol 279:2124–2132

    Google Scholar 

  • Speer O, Back N, Buerklen T, Brdiczka D, Koretsky A, Wallimann T, Eriksson O (2005) Biochem J 385:445–450

    Article  CAS  Google Scholar 

  • Sultan A, Sokolove P (2001a) Arch Biochem Biophys 386:37–51

    Article  CAS  Google Scholar 

  • Sultan A, Sokolove P (2001b) Arch Biochem Biophys 386:52–61

    Article  CAS  Google Scholar 

  • Ulloth J, Casiano C, De Leon M (2003) J Neurochem 84:655–668

    Article  CAS  Google Scholar 

  • Vork MM, Glatz JF, van der Vusse GJ (1993) Mol Cell Biochem 123(1–2):175–184

    Article  CAS  Google Scholar 

  • Wojtczak AB (1969) Biochim Biophys Acta 172:52–65

    Article  CAS  Google Scholar 

  • Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, Hagberg H, Blomgren K (2005) Cell Death Differ 12:162–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina D. Mironova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belosludtsev, K.N., Saris, NE.L., Belosludtseva, N.V. et al. Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia. J Bioenerg Biomembr 41, 395–401 (2009). https://doi.org/10.1007/s10863-009-9230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-009-9230-x

Keywords

Navigation