Skip to main content

Advertisement

Log in

Cardioprotective Effect of 3-Iodothyronamine in Perfused Rat Heart Subjected to Ischemia and Reperfusion

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

3-iodothyronamine (T1AM) is an endogenous compound which shares structural and functional features with biogenic amines and is able to interact with a specific class of receptors, designed as trace amine associated receptors. T1AM has significant physiological effects in mammals and produces a reversible, dose-dependent negative inotropic and chronotropic effect in heart. The aim of the present study was to investigate if T1AM is able to reduce irreversible tissue injury in isolated rat hearts subjected to ischemia and reperfusion, as evaluated by triphenyltetrazolium chloride staining. We observed that T1AM reduced infarct size at concentrations (125 nM to 12.5 μM) which did not produce any significant hemodynamic action. The dose–response curve was bell-shaped and peaked at 1.25 μM. T1AM-induced cardioprotection was completely reversed by the administration of chelerythrine and glibenclamide, suggesting a protein kinase C and K +ATP -dependent pathway, while it was not additive to the protection induced by cyclosporine A, suggesting modulation of mitochondrial permeability transition. At cardioprotective concentration, T1AM reduced the time needed for cardiac attest during ischemia, but it did not affect sarcoplasmatic reticulum Ca2+ handling, as demonstrated by unaltered ryanodine receptor binding properties. In conclusion, in isolated rat heart T1AM produces a cardioprotective effect which is mediated by a protein kinase C and K +ATP -dependent pathway and is probably linked to modulation of mitochondrial permeability transition and/or ischemic arrest time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638–42.

    Article  PubMed  CAS  Google Scholar 

  2. Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A, et al. Tissue distribuition and cardiac metabolism of 3-iodothyronamine. Endocrinology. 2010;151:5063–73.

    Article  PubMed  CAS  Google Scholar 

  3. Piehl S, Hoefig C, Scanlan TS, Köhrle J. Thyronamines—past, present, and future. Endocrine Rev. 2011;32:64–80.

    Article  CAS  Google Scholar 

  4. Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Trace amine-associated receptors and their ligands. Br J Pharmacol. 2006;149:967–78.

    Article  PubMed  CAS  Google Scholar 

  5. Frascarelli S, Ghelardoni S, Chiellini G, Vargiu R, Ronca-Testoni S, Scanlan TS, et al. Cardiac effects of trace amines: pharmacological characterization of trace amine-associated receptors. Eur J Pharmacol. 2008;589:231–6.

    Article  Google Scholar 

  6. Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A, et al. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J. 2007;21:1597–608.

    Article  PubMed  CAS  Google Scholar 

  7. Ghelardoni S, Suffredini S, Frascarelli S, Brogioni S, Chiellini G, Ronca-Testoni S, et al. Modulation of cardiac ionic homeostasis by 3-iodothyronamine. J Cell Mol Med. 2009;13:3082–90.

    Article  PubMed  Google Scholar 

  8. Zucchi R, Ronca F, Ronca-Testoni S. Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther. 2001;89:47–65.

    Article  PubMed  CAS  Google Scholar 

  9. Zucchi R, Ghelardoni S, Evangelista S. Biochemical basis of ischemic heart injury and of cardioprotective interventions. Curr Med Chem. 2007;14:1619–37.

    Article  PubMed  CAS  Google Scholar 

  10. Doyle KP, Suchland KL, Ciesielski TM, Lessov NS, Grandy DK, Scanlan TS, et al. Novel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury. Stroke. 2007;38:2569–76.

    Article  PubMed  CAS  Google Scholar 

  11. Hart ME, Suchland KL, Miyakawa M, Bunzow JR, Grandy DK, Scanlan TS. Trace amine-associated receptor agonists: synthesis and evaluation of thyronamines and related analogues. J Med Chem. 2006;49:1101–12.

    Article  PubMed  CAS  Google Scholar 

  12. Vivaldi MT, Kloner RA, Schoen FJ. Triphenyltetrazolium staining of irreversible ischemic injury following coronary artery occlusion in rats. Am J Pathol. 1985;121:522–30.

    PubMed  CAS  Google Scholar 

  13. Zucchi R, Ronca-Testoni S, Yu G, Galbani P, Ronca G, Mariani M. Postischemic changes in cardiac sarcoplasmic reticulum Ca2+ channels A possible mechanism of ischemic preconditioning. Circ Res. 1995;76:1049–56.

    PubMed  CAS  Google Scholar 

  14. Zucchi R, Ronca-Testoni S, Yu G, Galbani P, Ronca G, Mariani M. Effect of ischemia and reperfusion on cardiac ryanodine receptors—sarcoplasmic reticulum Ca2+ channels. Circ Res. 1994;74:271–80.

    PubMed  CAS  Google Scholar 

  15. Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, et al. Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest. 2002;109:499–507.

    PubMed  CAS  Google Scholar 

  16. Pravdic D, Sedlic F, Mio Y, Vladic N, Bienengraeber M, Bosnjak ZJ. Anesthetic-induced preconditioning delays opening of mitochondrial permeability transition pore via protein Kinase C-epsilon-mediated pathway. Anesthesiology. 2009;111:267–74.

    Article  PubMed  CAS  Google Scholar 

  17. Gross GJ. The role of mitochondrial KATP channels in cardioprotection. Basic Res Cardiol. 2000;95:280–4.

    Article  PubMed  CAS  Google Scholar 

  18. Jovanovic A, Jovanovic S. SURA2 targeting for cardioprotection? Curr Opin Pharmacol. 2009;9:189–93.

    Article  PubMed  CAS  Google Scholar 

  19. O'Rourke B. Myocardial KATP channels in preconditioning. Circ Res. 2000;87:845–55.

    PubMed  Google Scholar 

  20. Das M, Parker JA, Halestrap AP. Matrix volume measurement challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. J Physiol. 2003;547:893–902.

    Article  PubMed  CAS  Google Scholar 

  21. Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol. 2009;46:858–66.

    Article  PubMed  CAS  Google Scholar 

  22. Jakobsen Ø, Muller S, Aarsaether E, Steensrud T, Sørlie DG. Adenosine instead of supranormal potassium in cardioplegic solution improves, cardioprotection. Eur J Cardiothorac Surg. 2007;32:493–500.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Zucchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frascarelli, S., Ghelardoni, S., Chiellini, G. et al. Cardioprotective Effect of 3-Iodothyronamine in Perfused Rat Heart Subjected to Ischemia and Reperfusion. Cardiovasc Drugs Ther 25, 307–313 (2011). https://doi.org/10.1007/s10557-011-6320-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6320-x

Key words

Navigation