Skip to main content
Log in

Urotensin upregulates transforming growth factor-β1 expression of asthma airway through ERK-dependent pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Airway smooth muscle cells (ASMCs) play a key role in the process of asthma airway remodeling. Urotensin II (UII) and transforming growth factor (TGF)-β are potent mitogens for ASMCs proliferation. The study was aimed to determine whether UII-upregulated TGF-β-mediated ASMCs proliferation and extracellular signal-regulated kinase (ERK) was required for such an effect. OVA-sensitized rats were challenged to induce asthma. Lung morphology and airway dynamic parameters were monitored. ASMCs from control and asthma rats were purified for the measurement of UII and TGF-β1 expression. In vitro experiments were conducted to determine the direct effect of UII on TGF-β1 expression by ASMCs. Finally, U0126, an ERK inhibitor was used to examine the role of ERK pathway in UII mediated TGF-β1 upregulation. We found that both UII and TGF-β1 were upregulated in asthma lung tissues. In vitro study on ASMCs further revealed that UII may render its effect on ASMCs cells through the upregulation of TGF-β1. Data also supported the conclusion that ERK pathway was required, but not sufficient in UII-induced TGF-β1 upregulation. The current study provides new evidence that UII is involved in the TGF-β mediated mitogenic effect on ASMCs. UII, at least partially, uses ERK pathway to render such effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang WX, Li CC (2011) Airway remodeling: a potential therapeutic target in asthma. World J Pediatr 7:124–128

    Article  PubMed  Google Scholar 

  2. Tang ML, Wilson JW, Stewart AG et al (2006) Airway remodelling in asthma: current understanding and implications for future therapies. Pharmacol Ther 112:474–488

    Article  PubMed  CAS  Google Scholar 

  3. Chen YH, Zhao MW, Yao WZ et al (2004) The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin II. Chin Med J (Engl) 117:37–41

    CAS  Google Scholar 

  4. Liang YF, Zhang WX, Li CC et al (2010) Changes in urotensin II expression in airway remodelling in asthmatic rats. Chin J Contemp Pediatr 12:287–289

    CAS  Google Scholar 

  5. Xie S, Sukkar MB, Issa R et al (2007) Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-beta. Am J Physiol Lung Cell Mol Physiol 293:L245–L253

    Article  PubMed  CAS  Google Scholar 

  6. Dai HY, Kang WQ, Wang X et al (2007) The involvement of transforming growth factor-beta1 secretion in urotensin II-induced collagen synthesis in neonatal cardiac fibroblasts. Regul Pept 140:88–93

    Article  PubMed  CAS  Google Scholar 

  7. Chen G, Khalil N (2006) TGF-beta1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases. Respir Res 7:2

    Article  PubMed  Google Scholar 

  8. Matsusaka S, Wakabayashi I (2006) Enhancement of vascular smooth muscle cell migration by urotensin II. Naunyn Schmiedebergs Arch Pharmacol 373:381–386

    Article  PubMed  CAS  Google Scholar 

  9. Palmans E, Kips JC, Pauwels RA (2000) Prolonged allergen exposure induces structural airway changes in sensitized rats. Am J Respir Crit Care Med 161:627–635

    PubMed  CAS  Google Scholar 

  10. Xia X, Hu X, Xu H et al (2012) Phosphatidylinositol 3-kinase inhibitor suppresses inducible nitric oxide synthase expression in bronchiole epithelial cells in asthmatic rats. Mol Cell Biochem 359:293–299

    Article  PubMed  CAS  Google Scholar 

  11. Bai A, Eidelman DH, Hogg JC et al (1994) Proposed nomenclature for quantifying subdivisions of the bronchial wall. J Appl Physiol 77:1011–1014

    PubMed  CAS  Google Scholar 

  12. Gao FH, Hu XH, Li W et al (2010) Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27, and c-myc. BMC Cancer 10:610

    Article  PubMed  CAS  Google Scholar 

  13. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  PubMed  CAS  Google Scholar 

  14. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    Article  PubMed  CAS  Google Scholar 

  15. Halwani R, Al-Muhsen S, Al-Jahdali H et al (2011) Role of transforming growth factor-beta in airway remodeling in asthma. Am J Respir Cell Mol Biol 44:127–133

    Article  PubMed  CAS  Google Scholar 

  16. Ames RS, Sarau HM, Chambers JK et al (1999) Human urotensin II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286

    Article  PubMed  CAS  Google Scholar 

  17. Hay DW, Luttmann MA, Douglas SA (2000) Human urotensin II is a potent spasmogen of primate airway smooth muscle. Br J Pharmacol 131:10–12

    Article  PubMed  CAS  Google Scholar 

  18. Wu YQ, Song Z, Zhou CH et al (2010) Expression of urotensin II and its receptor in human lung adenocarcinoma A549 cells and the effect of urotensin II on lung adenocarcinoma growth in vitro and in vivo. Oncol Rep 24:1179–1184

    Article  PubMed  CAS  Google Scholar 

  19. Kristof AS, You Z, Han YS et al (2010) Protein expression of urotensin II, urotensin-related peptide and their receptor in the lungs of patients with lymphangioleiomyomatosis. Peptides 31:511–516

    Article  Google Scholar 

  20. Kemp W, Kompa A, Phrommintikul A et al (2009) Urotensin II modulates hepatic fibrosis and portal hemodynamic alterations in rats. Am J Physiol Gastrointest Liver Physiol 297:G762–G767

    Article  PubMed  CAS  Google Scholar 

  21. Guan XJ, Zhang WX, Li CC et al (2007) The role of external signal regulated kinase and transforming growth factor beta(1) in asthma airway remodeling and regulation of glucocorticoids (in Chinese). Chin Med J 87:1672–1767

    Google Scholar 

  22. Naureckas ET, Ndukwu IM, Halayko AJ et al (1999) Bronchoalveolar lavage fluid from asthmatic subjects is mitogenic for human airway smooth muscle. Am J Respir Crit Care Med 160:2062–2066

    PubMed  CAS  Google Scholar 

  23. Moynihan B, Tolloczko B, Michoud MC et al (2008) MAP kinases mediate interleukin-13 effects on calcium signaling in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 295:L171–L177

    Article  PubMed  CAS  Google Scholar 

  24. Lee JH, Johnson PR, Roth M et al (2001) ERK activation and mitogenesis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 280:L1019–L1029

    PubMed  CAS  Google Scholar 

  25. Xie M, Liu XS, Xu YJ et al (2007) ERK1/2 signaling pathway modulates the airway smooth muscle cell phenotype in the rat model of chronic asthma. Respiration 74:680–690

    Article  PubMed  CAS  Google Scholar 

  26. Lin Y, Matsumura K, Tsuchihashi T et al (2004) Role of ERK and Rho kinase pathways in central pressor action of urotensin II. J Hypertens 22:983–988

    Article  PubMed  CAS  Google Scholar 

  27. Tamura K, Okazaki M, Tamura M et al (2003) Urotensin II-induced activation of extracellular signal-regulated kinase in cultured vascular smooth muscle cells: involvement of cell adhesion-mediated integrin signaling. Life Sci 72:1049–1060

    Article  PubMed  CAS  Google Scholar 

  28. Matsushita M, Shichiri M, Fukai N et al (2003) Urotensin II is an autocrine/paracrine growth factor for the porcine renal epithelial cell line, LLCPK1. Endocrinology 144:1825–1831

    Article  PubMed  CAS  Google Scholar 

  29. Zou Y, Nagai R, Yamazaki T (2001) Urotensin II induces hypertrophic responses in cultured cardiomyocytes from neonatal rats. FEBS Lett 508:57–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No:8100015 and No:30571981), the Provincial Natural Science Foundation of Zhejiang (No:2090327),and by Scientific Research Fund of Zhejiang Provincial Education Department (No:20070906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-chong Li.

Additional information

W. Zhang and Y. Liang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Wx., Liang, Yf., Wang, Xm. et al. Urotensin upregulates transforming growth factor-β1 expression of asthma airway through ERK-dependent pathway. Mol Cell Biochem 364, 291–298 (2012). https://doi.org/10.1007/s11010-012-1229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1229-7

Keywords

Navigation