Skip to main content
Log in

Phosphatidylinositol 3-kinase inhibitor suppresses inducible nitric oxide synthase expression in bronchiole epithelial cells in asthmatic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inducible nitric oxide synthase (iNOS) is known to produce nitric oxide (NO), which is a main contributor to asthmatic airway inflammation. Recent studies have shown that phosphatidylinositol 3-kinase (PI3K) is ubiquitously expressed in airway epithelial cells and its inhibition could relieve airway inflammation and hyperresponsiveness. This study aimed to explore the interaction of PI3K and NO signaling in allergic asthma. We investigated the effects of PI3K inhibitor wortmannin on iNOS expression in bronchiole epithelial cells and NO, IL-4 and IFN-γ levels in lung tissues of asthmatic rat model, which was prepared by 10% OVA solution sensitization and 1% OVA aerosol challenge. Our results showed that the ratio of eosinophils to total cells in BALF, PI3K activity, NO and IL-4 levels in lung tissues was increased after OVA sensitization and challenge, but then was attenuated by the administration of wortmannin. In contrast, IFN-γ level in lung tissues was decreased after OVA sensitization and challenge and increased after the administration of wortmannin. The expression of iNOS protein in bronchiole epithelial cells, iNOS mRNA level and iNOS activity in lung tissues was markedly upregulated after OVA sensitization and challenge, but the upregulation was significantly antagonized by wortmannin. Taken together, these data provide evidence that PI3K functions upstream to modulate iNOS/NO signaling, which then promotes the development of airway inflammation in asthmatic animal model. PI3K inhibitor wortmannin could lead to reduced iNOS expression and NO production, therefore inhibiting airway inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coccia EM, Stellacci E, Marziali G et al (2000) IFN-gamma and IL-4 differently regulate inducible NO synthase gene expression through IRF-1 modulation. Int Immunol 12:977–985

    Article  PubMed  CAS  Google Scholar 

  2. Prado CM, Leick-Maldonado EA, Yano L et al (2006) Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. Am J Respir Cell Mol Biol 35:457–465

    Article  PubMed  CAS  Google Scholar 

  3. Kharitonov SA, Yates D, Robbins RA et al (1994) Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343:133–135

    Article  PubMed  CAS  Google Scholar 

  4. Steudel W, Kirmse M, Weimann J et al (2000) Exhaled nitric oxide production by nitric oxide synthase-deficient mice. Am J Respir Crit Care Med 162:1262–1267

    PubMed  CAS  Google Scholar 

  5. Eynott PR, Paavolainen N, Groneberg DA et al (2003) Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation. J Pharmacol Exp Ther 304:22–29

    Article  PubMed  CAS  Google Scholar 

  6. Vanhaesebroeck B, Ali K, Bilancio A et al (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30:194–204

    Article  PubMed  CAS  Google Scholar 

  7. Chantry D, Vojtek A, Kashishian A et al (1997) p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem 272:19236–19241

    Article  PubMed  CAS  Google Scholar 

  8. Krymskaya VP, Ammit AJ, Hoffman RK et al (2001) Activation of class IA PI3K stimulates DNA synthesis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 280:L1009–L1018

    PubMed  CAS  Google Scholar 

  9. Ito K, Caramori G, Adcock IM (2007) Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J Pharmacol Exp Ther 321:1–8

    Article  PubMed  CAS  Google Scholar 

  10. Takeda M, Ito W, Tanabe M et al (2010) The pathophysiological roles of PI3Ks and therapeutic potential of selective inhibitors in allergic inflammation. Int Arch Allergy Immunol 152:90–95

    Article  PubMed  CAS  Google Scholar 

  11. Thomas M, Owen C (2008) Inhibition of PI-3 kinase for treating respiratory disease: good idea or bad idea? Curr Opin Pharmacol 8:267–274

    Article  PubMed  CAS  Google Scholar 

  12. Duan W, Aguinaldo Datiles AM, Leung BP et al (2005) An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model. Int Immunopharmacol 5:495–502

    Article  PubMed  CAS  Google Scholar 

  13. Ezeamuzie CI, Sukumaran J, Philips E (2001) Effect of wortmannin on human eosinophil responses in vitro and on bronchial inflammation and airway hyperresponsiveness in rats in vivo. Am J Respir Crit Care Med 164:1633–1639

    PubMed  CAS  Google Scholar 

  14. Lee KS, Lee HK, Hayflick JS et al (2006) Inhibition of phosphoinositide 3-kinase delta attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. FASEB J 20:455–465

    Article  PubMed  CAS  Google Scholar 

  15. Xiong Y, Karupiah G, Hogan SP et al (1999) Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2. J Immunol 162:445–452

    PubMed  CAS  Google Scholar 

  16. De Sanctis GT, MacLean JA, Hamada K et al (1999) Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. J Exp Med 189:1621–1630

    Article  PubMed  Google Scholar 

  17. Donnelly LE, Barnes PJ (2002) Expression and regulation of inducible nitric oxide synthase from human primary airway epithelial cells. Am J Respir Cell Mol Biol 26:144–151

    PubMed  CAS  Google Scholar 

  18. Jiang J, Malavia N, Suresh V et al (2009) Nitric oxide gas phase release in human small airway epithelial cells. Respir Res 10:24–31

    Article  Google Scholar 

  19. Takemoto K, Ogino K, Shibamori M et al (2007) Transiently, paralleled upregulation of arginase and nitric oxide synthase and the effect of both enzymes on the pathology of asthma. Am J Physiol Lung Cell Mol Physiol 293:L1419–L1426

    Article  PubMed  CAS  Google Scholar 

  20. Schedel M, Pinto LA, Schaub B et al (2008) IRF-1 gene variations influence IgE regulation and atopy. Am J Respir Crit Care Med 177:613–621

    Article  PubMed  CAS  Google Scholar 

  21. Dai R, Phillips RA, Karpuzoglu E et al (2009) Estrogen regulates transcription factors STAT-1 and NF-kappaB to promote inducible nitric oxide synthase and inflammatory responses. J Immunol 183:6998–7005

    Article  PubMed  CAS  Google Scholar 

  22. Bratt JM, Franzi LM, Linderholm AL et al (2009) Arginase enzymes in isolated airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin. Toxicol Appl Pharmacol 234:273–280

    Article  PubMed  CAS  Google Scholar 

  23. Feder LS, Stelts D, Chapman RW et al (1997) Role of nitric oxide on eosinophilic lung inflammation in allergic mice. Am J Respir Cell Mol Biol 17:436–442

    PubMed  CAS  Google Scholar 

  24. Kang YJ, Lee YS, Lee GW et al (1999) Inhibition of activation of nuclear factor kappaB is responsible for inhibition of inducible nitric oxide synthase expression by higenamine, an active component of aconite root. J Pharmacol Exp Ther 291:314–320

    PubMed  CAS  Google Scholar 

  25. Khanduja KL, Kaushik G, Khanduja S et al (2011) Corticosteroids affect nitric oxide generation, total free radicals production, and nitric oxide synthase activity in monocytes of asthmatic patients. Mol Cell Biochem 346:31–37

    Article  PubMed  CAS  Google Scholar 

  26. Kwak YG, Song CH, Yi HK et al (2003) Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J Clin Invest 111:1083–1092

    PubMed  CAS  Google Scholar 

  27. Myou S, Leff AR, Myo S et al (2003) Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J Exp Med 198:1573–1582

    Article  PubMed  CAS  Google Scholar 

  28. Tigani B, Hannon JP, Mazzoni L et al (2000) Effects of wortmannin on bronchoconstrictor responses to adenosine in actively sensitised Brown Norway rats. Eur J Pharmacol 406:469–476

    Article  PubMed  CAS  Google Scholar 

  29. Marwick JA, Chung KF, Adcock IM (2010) Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther Adv Respir Dis 4:19–34

    Article  PubMed  Google Scholar 

  30. Hattori Y, Hattori S, Kasai K (2003) Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. Eur J Pharmacol 481:153–158

    Article  PubMed  CAS  Google Scholar 

  31. Pinho V, Souza DG, Barsante MM et al (2005) Phosphoinositide-3 kinases critically regulate the recruitment and survival of eosinophils in vivo: importance for the resolution of allergic inflammation. J Leukoc Biol 77:800–810

    Article  PubMed  CAS  Google Scholar 

  32. Kao SJ, Lei HC, Kuo CT et al (2005) Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology 115:366–374

    Article  PubMed  CAS  Google Scholar 

  33. Sakai K, Suzuki H, Oda H et al (2006) Phosphoinositide 3-kinase in nitric oxide synthesis in macrophage: critical dimerization of inducible nitric-oxide synthase. J Biol Chem 281:17736–17742

    Article  PubMed  CAS  Google Scholar 

  34. Kuroda E, Antignano F, Ho VW et al (2011) SHIP represses Th2 skewing by inhibiting IL-4 production from basophils. J Immunol 186:323–332

    Article  PubMed  CAS  Google Scholar 

  35. Kristof AS, Fielhaber J, Triantafillopoulos A et al (2006) Phosphatidylinositol 3-kinase-dependent suppression of the human inducible nitric-oxide synthase promoter is mediated by FKHRL1. J Biol Chem 281:23958–23968

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Zhejiang Provincial Natural Science Foundation of China (Y2080466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, X., Hu, X., Xu, H. et al. Phosphatidylinositol 3-kinase inhibitor suppresses inducible nitric oxide synthase expression in bronchiole epithelial cells in asthmatic rats. Mol Cell Biochem 359, 293–299 (2012). https://doi.org/10.1007/s11010-011-1023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1023-y

Keywords

Navigation