Skip to main content
Log in

Super topological recursion and Gaiotto vectors for superconformal blocks

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate a relation between the super topological recursion and Gaiotto vectors for \({\mathcal {N}}=1\) superconformal blocks. Concretely, we introduce the notion of the untwisted and \(\mu \)-twisted super topological recursion and construct a dual algebraic description in terms of super Airy structures. We then show that the partition function of an appropriate super Airy structure coincides with the Gaiotto vector for \({\mathcal {N}}=1\) superconformal blocks in the Neveu–Schwarz or Ramond sector. Equivalently, the Gaiotto vector can be computed by the untwisted or \(\mu \)-twisted super topological recursion. This implies that the framework of the super topological recursion—equivalently super Airy structures—can be applied to compute the Nekrasov partition function of \({\mathcal {N}}=2\) pure U(2) supersymmetric gauge theory on \({\mathbb {C}}^2/{\mathbb {Z}}_2\) via a conjectural extension of the Alday–Gaiotto–Tachikawa correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The AGT correspondence can be, in fact, thought of a particular example of a wider class of duality, the so-called BPS/CFT correspondence reviewed in [27,28,29,30] which describes a relation between supersymmetric gauge theory, integrable systems, and 2d conformal field theory. Another descendant of the BPS/CFT correspondence is the so-called Bethe/Gauge correspondence [32,33,34] which indeed predates the AGT correspondence.

  2. They found Airy structures for \({\mathcal {W}}({\mathfrak {g}})\)-algebras of type D or E as well.

  3. In the context of superconformal structures of super Riemann surfaces, a completely nonintegrable subbundle \({\mathcal {D}}\) of rank 0|1 normally refers to \({\mathcal {D}}\subset T{\mathbb {C}}_z\) (e.g. [38, Sect. 2.2]) instead of \(T^*{\mathbb {C}}_z\). Thus, one might find \(\tilde{{\mathcal {D}}}\) a dual description of \({\mathcal {D}}\).

  4. The original definition in [9] considers only power series of \(\hbar \) rather than \(\hbar ^{\frac{1}{2}}\). However, there is no issue with extending the algebra with \(\hbar ^{\frac{1}{2}}\) because \(\deg \hbar ^{\frac{1}{2}}=1\). In particular, Theorem 3.2 stands because their proof considers induction with respect to \(\chi =2g+n\), and \(\chi \) remains integers even with \(\hbar ^{\frac{1}{2}}\).

  5. \(\hbar \) is inserted in order to meet the criteria of super Airy structures (3.4). Also, the central charge in [4, 19] uses a different normalisation.

  6. This point is already addressed in [9, Sect. 5.1] when \(\tau _l=\delta _{l,-N+1}\) and \(Q_l=\phi _{kl}=\psi _{kl}=0\).

  7. Since \(\{{{\bar{H}}}_i,{{\bar{F}}}_i\}\) and \(\{ H_i,F_i\}\) are linearly related by some upper triangular matrix, the resulting differential constraints \(H_ie^{{\mathcal {F}}}= F_ie^{{\mathcal {F}}}=0\) are equivalent to \(\bar{H}_ie^{{\mathcal {F}}_F}=\bar{F}_ie^{{\mathcal {F}}_F}=0\).

  8. Without supersymmetry, a vector \(\vert w\rangle \) in the Verma module satisfying \(L_1 \vert w\rangle =\Lambda \vert w\rangle \) and \(L_{n\ge 2}\vert w\rangle =0\) is called the “Whittaker vector”, whereas the corresponding Gaiotto vector is rather defined as a formal sum of some cohomology classes of an appropriate instanton moduli space [7, Sect. 2.1]. Thus, strictly speaking, one may call \(\vert G\rangle \) in Definition 4.3 the Whittaker vector instead of the Gaiotto vector, though the AGT correspondence states that these two vectors are equivalent to each other. In the present paper, however, we call it the Gaiotto vector in order to emphasise a relation to four-dimensional supersymmetric gauge theory.

  9. We abuse the notation and \(\vert M\rangle \) without any subscript refers to the Gaiotto vector of level M in the Neveu–Schwarz sector while \(\vert M\rangle _{\pm }\) with subscript are in the Ramond sector.

  10. [19] takes the BPZ conjugation but we use the standard Hermite conjugation. In particular, there is no \((-i)\) in (4.27) in our notation.

  11. This is analogous to [7, Lemma 4.5].

  12. [19] computed up to level 2.

  13. This is because graphs in \(\hat{{\mathbb {G}}}\) are defined up to permutations.

  14. See [7, Sect. 4.4] for the graphical interpretation without fermions where the symmetry factor is explicitly written. We omit an explicit formula for the symmetry factor for brevity of notation

  15. To the authors’ best knowledge, an analogous vector in the Neveu–Schwarz sector is not discussed in the literature.

  16. In the previous section, we denoted by IJ a collection of bosonic and fermionic variables. We abuse the notation here, but one should be able to decode whether they are collections of indices or variables from the context.

References

  1. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219

    Article  ADS  MathSciNet  Google Scholar 

  2. Andersen, J.E., Borot, G., Chekhov, L.O., Orantin, N.: The ABCD of topological recursion. arXiv:1703.03307

  3. Braverman, A., Finkelberg, M., Nakajima, H.: Instanton moduli spaces and \({\cal{W}}\)-algebras. arXiv:1406.2381

  4. Belavin, V., Feigin, B.: Super Liouville conformal blocks from N=2 SU(2) quiver gauge theories. JHEP 07, 079 (2011). arXiv:1105.5800

    Article  ADS  MathSciNet  Google Scholar 

  5. Belavin, A., Belavin, V., Bershtein, M.: Instantons and 2d Superconformal field theory. JHEP 09, 117 (2011). arXiv:1106.4001

    Article  ADS  MathSciNet  Google Scholar 

  6. Bonelli, G., Maruyoshi, K., Tanzini, A.: Gauge theories on ALE space and super Liouville correlation functions. Lett. Math. Phys. 101, 103–124 (2012). arXiv:1107.4609

    Article  ADS  MathSciNet  Google Scholar 

  7. Borot, G., Bouchard, V., Chidambaram, N.K., Creutzig, T.: Whittaker vectors for \({\cal{W}}\)-algebras from topological recursion. arXiv:2104.04516

  8. Borot, G., Bouchard, V., Chidambaram, N.K., Creutzig, T., Noshchenko, D.: Higher airy structures, W algebras and topological recursion. arXiv:1812.08738

  9. Bouchard, V., Ciosmak, P., Hadasz, L., Osuga, K., Ruba, B., Sułkowski, P.: Super quantum airy structures. arXiv:1907.08913

  10. Bouchard, V., Eynard, B.: Think globally, compute locally. JHEP 02, 143 (2013). arXiv:1211.2302

    Article  ADS  MathSciNet  Google Scholar 

  11. Bouchard, V., Osuga, K.: Supereigenvalue models and topological recursion. JHEP 1804, 138 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bouchard, V., Osuga, K.: “\({\cal{N}}=1\) Super Topological Recursion,” arXiv:2007.13186

  13. Chekhov, L., Eynard, B., Orantin, N.: Free energy topological expansion for the 2-matrix model. JHEP 0612, 053 (2006). arXiv:math-ph/0603003

    Article  ADS  MathSciNet  Google Scholar 

  14. Ciosmak, P., Hadasz, L., Jaskólski, Z., Manabe, M., Sułkowski, P.: From CFT to Ramond super-quantum curves. JHEP 05, 133 (2018)

  15. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)

    Article  MathSciNet  Google Scholar 

  16. Eynard, B., Orantin, N.: Topological recursion in random matrices and enumerative geometry. J. Phys. A Math. Theor. 42(29) (2009) arXiv:0811.3531

  17. Gaiotto, D.: Asymptotically free \({\cal{N}} = 2\) theories and irregular conformal blocks. J. Phys. Conf. Ser. 462(1), 012014 (2013) arXiv:0908.0307

  18. Gottsche, L., Nakajima, H., Yoshioka, K.: Instanton counting and Donaldson invariants. J. Differ. Geom. 80(3), 343–390 (2008)

    Article  MathSciNet  Google Scholar 

  19. Ito, Y.: Ramond sector of super Liouville theory from instantons on an ALE space. Nucl. Phys. B 861, 387–402 (2012). arXiv:1110.2176

    Article  ADS  MathSciNet  Google Scholar 

  20. Ito, Y.: Supersymmetric gauge theories on various four-dimensional spaces and two-dimensional conformal field theories. Ph.D Thesis

  21. Kontsevich, M., Soibelman, Y.: Airy structures and symplectic geometry of topological recursion. arXiv:1701.09137

  22. Le Floch, B.: A slow review of the AGT correspondence. arXiv:2006.14025

  23. Manabe, M.: \(n\)-th parafermion \({\cal{W}_{N}}\) characters from \(U(N)\) instanton counting on \({\mathbb{C}^{2}}/{\mathbb{Z}_{n}}\). JHEP 06, 112 (2020) arXiv:2004.13960

  24. Nakajima, H., Yoshioka, K.: Instanton counting on blowup. 1. Invent. Math. 162, 313–355 (2005). arXiv:math/0306198

    Article  ADS  MathSciNet  Google Scholar 

  25. Nakajima, H., Yoshioka, K.: Lectures on instanton counting. arXiv:math/0311058

  26. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831–864 (2003) arXiv:hep-th/0206161

  27. Nekrasov, N.: BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qq-characters. JHEP 03, 181 (2016) arXiv:1512.05388

  28. Nekrasov, N.: BPS/CFT correspondence III: Gauge Origami partition function and qq-characters. Commun. Math. Phys. 358(3), 863–894 (2018) arXiv:1701.00189

  29. Nekrasov, N.: BPS/CFT correspondence IV: sigma models and defects in gauge theory. Lett. Math. Phys. 109(3), 579–622 (2019) arXiv:1711.11011

  30. Nekrasov, N.: BPS/CFT correspondence V: BPZ and KZ equations from qq-characters. arXiv:1711.11582

  31. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. Prog. Math. 244, 525–596 (2006). arXiv:hep-th/0306238

    Article  MathSciNet  Google Scholar 

  32. Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. B Proc. Suppl. 192–193, 91–112 (2009). arXiv:0901.4744

    Article  ADS  MathSciNet  Google Scholar 

  33. Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105–119 (2009). arXiv:0901.4748

    Article  ADS  Google Scholar 

  34. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. arXiv:0908.4052

  35. Osuga, K.: Topological recursion in the Ramond sector. JHEP 1910, 286 (2019) https://doi.org/10.1007/JHEP10(2019)286arXiv:1909.08551

  36. Tachikawa, Y.: A review on instanton counting and W-algebras. arXiv:1412.7121

  37. Tachikawa, Y.: A brief review of the 2d/4d correspondences. J. Phys. A 50(44), 443012 (2017) arXiv:1608.02964

  38. Witten, E.: Notes on super Riemann surfaces and their moduli. Pure Appl. Math. Quart. 15(1), 57–211 (2019) arXiv:1209.2459

Download references

Acknowledgements

The author owes many thanks to Nitin Chidambaram for inspirational discussions and for helpful explanations of the recent results of BBCC [7]. The author thanks Andrea Brini, Omar Kidwai, and Piotr Sułkowski for various comments. The author also acknowledges the Young Researchers Integrability School and Workshop 2020 (YRISW) for a series of introductory lectures at which the author learnt about some topics discussed in the present paper. This work is supported by the Engineering and Physical Sciences Research Council under grant agreement ref. EP/S003657/2, by the TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (POIR.04.04.00-00-5C55/17- 00), and also during the revision by Grant-in-Aid for JSPS Fellows (KAKENHI Grant Number: 22J00102). Finally, the author appreciates various helpful comments by the editors and referees for the improvements of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kento Osuga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Computational details

Appendix A. Computational details

1.1 A.1 Computations for the proof of Proposition 3.3

We show that there exists a linear transformation that brings \(H_{i} ,F_{i}\) to the form of (3.3). Note that \(\Phi _N\) acts on Heisenberg modes \((J_a)_{a\in {\mathbb {Z}}}\) and \((\Gamma _r)_{r\in {\mathbb {Z}}+f}\) as:

$$\begin{aligned} \Phi _N J_0 \Phi _N^{-1}=&J_0, \end{aligned}$$
(A.1)
$$\begin{aligned} \forall a\in {\mathbb {Z}}_{\ne 0}\;\;\;\;\;\;\;\Phi _N J_{-a} \Phi _N^{-1}=&J_{-a}+\sum _{b\ge 1}\frac{\phi _{ab}}{b}J_b\nonumber \\&+\tau _{a}+\hbar ^{\frac{1}{2}}Q_{a}+\sum _{b=1}^{N-1}\frac{(\tau _{-b}+\hbar ^{\frac{1}{2}}Q_{-b})\phi _{ab}}{b}, \end{aligned}$$
(A.2)
$$\begin{aligned} \forall r\in {\mathbb {Z}}+f\;\;\;\;\Phi _N \Gamma _{-r}\Phi _N^{-1}=&\Gamma _{-r}+\sum _{s\in {\mathbb {Z}}_{\ge 0}}\psi _{r-f, s}\Gamma _{s+f}, \end{aligned}$$
(A.3)

where we conventionally defined \(\phi _{0,k}=0\), and \(\tau _{l-N+1}=Q_{l-N+1}=\phi _{l,k}=\psi _{l,k}=0\) for \(l\in {\mathbb {Z}}_{<0}\). Using (A.2) and (A.3), one can explicitly write \(H_{i} ,F_{i}\) as

$$\begin{aligned} H_i&=\sum _{k\in {\mathbb {Z}}_{\ge 0}} C_k J_{i+k}+\hbar ^{\frac{1}{2}}\sum _{k\in {\mathbb {Z}}_{\ge 0}} C'_k J_{i+k}-\frac{N+i}{2}Q\hbar ^{\frac{1}{2}}J_{i+N-1}\nonumber \\&\;\;\;\;+\frac{1}{2}\sum _{j,k\in {\mathbb {Z}}_{\ne 0}}C_i^{j,k|}:J_jJ_k:+\frac{1}{2}\sum _{i,j\in {\mathbb {Z}}}C_i^{|j,k}:\Gamma _{j+f}\Gamma _{k+f}:+\hbar {{\tilde{D}}}_i\delta _{i\le N}, \end{aligned}$$
(A.4)
$$\begin{aligned} F_i&=\sum _{k\in {\mathbb {Z}}_{\ge 0}} C_k \Gamma _{i+k+f}+\hbar ^{\frac{1}{2}}\sum _{k\in {\mathbb {Z}}_{\ge 0}} C'_k \Gamma _{i+k+f}\nonumber \\&\quad -\left( N+i-\frac{1-2f}{2}\right) Q\hbar ^{\frac{1}{2}}\Gamma _{N+i+f-1}+\sum _{j,k\in {\mathbb {Z}}}C_i^{j|k}:J_j\Gamma _{k+f}:, \end{aligned}$$
(A.5)

where

$$\begin{aligned} C_k=&\tau _{k-N+1}+\sum _{p=1}^{N-1}\frac{\tau _{-p}\phi _{p, k-N+1}}{p}, \end{aligned}$$
(A.6)
$$\begin{aligned} C'_k=&Q_{k-N+1}+\sum _{p=1}^{N-1}\frac{Q_{-p}\phi _{p, k-N+1}}{p}, \end{aligned}$$
(A.7)
$$\begin{aligned} C_i^{j,k|}=&\delta _{j+k,N+i-1}+\frac{\phi _{j,k-N-i+1}}{j}+\frac{\phi _{j-N-i+1,k}}{k}, \end{aligned}$$
(A.8)
$$\begin{aligned} C_i^{|j,k}=&\frac{1}{2}\Bigl ((k-j)\delta _{j+k+2f,i+N-1}+(2k+2f-N-i+1)\psi _{j,k-N-i+1}\nonumber \\&-(2j+2f-N-i+1)\psi _{k,j-N-i+1}\Bigr ), \end{aligned}$$
(A.9)
$$\begin{aligned} C_i^{j|k}=&\delta _{j+k,N+i-1}+\frac{\phi _{j,k-N-i+1}}{j}+\psi _{k,j-N-i+1-2f}, \end{aligned}$$
(A.10)

Recall that \(\tau _{-(N-1)}\ne 0\), which implies \(C_0\ne 0\). Then, from the degree 1 terms in \(H_i\) and \(F_i\), one notices that there exists an (infinite dimensional) upper triangular matrix that takes \(H_i,F_i\) to \({{\bar{H}}}_i, {{\bar{F}}}_i\) of the form of (3.3), that is,

$$\begin{aligned} {{\bar{H}}}_i=J_i+\hbar D_i+\text {deg. 2 terms},\;\;\;\;\bar{F}_i=\Gamma _i+\text {deg. 2 terms}. \end{aligned}$$
(A.11)

It is important that there is only one \(D_i\) for each i in \(\bar{H}_i\). This is exactly why we define \({{\tilde{D}}}_i\) by (3.18). Therefore, \(\{H_{i} ,F_{i}\}_{ i\in {\mathbb {Z}}_{\ge 1}}\) and \(\{\bar{H}_{i} ,{{\bar{F}}}_{i}\}_{ i\in {\mathbb {Z}}_{\ge 1}}\) are related by a linear transformation, and this proves that \(\tilde{{\mathcal {S}}}_F\) forms a super Airy structure.

1.2 A.2. Computations for the proof of Theorem 3.4

We first consider the differential constraints given by the operators \({{\bar{H}}}_i,{{\bar{F}}}_i\) defined in (A.11). Then, for \((g,n,m)=(1,1,0)\), it is easy to see that \(\bar{H}_ie^{{\mathcal {F}}}={{\bar{F}}}_ie^{{\mathcal {F}}}=0\) gives

$$\begin{aligned} F_{1,1|0}(i)=D_i. \end{aligned}$$
(A.12)

See, for example, [9, Theorem 2.20] for justifying this consequence. On the other hand, \(\omega _{1,1|0}\) is a part of the defining data of the super spectral curve. Thus, (3.23) holds for \((g,n,m)=(1,1,0)\). Note that for \((g,n,m)=(0,3,0)\) and \((g,n,m)=(0,1,2)\), one can also show that \(F_{0,3|0}=F_{0,1|2}=0\).

For any other (gnm) with \(2g+n+2m-2>0\), the strategy is the same as the proof given in [12, Appendix A.3]. It turns out that it is more convenient to consider the constraints coming from \(H_ie^{{\mathcal {F}}}= F_ie^{{\mathcal {F}}}=0\) in order to match with the super topological recursion (see Footnote 7). Let us denote by \(I=\{i_1,i_2,\ldots \}\) a collections of positive integers and by \(J=\{j_1,j_2,\ldots \}\) by a collection of nonnegative integersFootnote 16. Then, we introduce the following quantities:

$$\begin{aligned} \Xi _{g,n+1|2m}[i,I|J]&=\sum _{k\ge 0}C_kF_{g,n+1|2m}(i+k,I|J)+\sum _{k\ge 0}C'_kF_{g-\frac{1}{2},n|2m}(i+k,I|J)\nonumber \\&\;\;\;\;-\frac{1}{2} Q_0(i+N)F_{g-\frac{1}{2},n+1|2m}(i+N-1,I|J), \end{aligned}$$
(A.13)
$$\begin{aligned} \Xi _{g,n|2m}[I|i,J]&=\sum _{k\ge 0}C_kF_{g,n|2m}(I|k+i,J)+\sum _{k\ge 0}C'_kF_{g-\frac{1}{2},n|2m}(I|k+i,J)\nonumber \\&\;\;\;\;-Q_0(N+i-\frac{1-2f}{2})F_{g-\frac{1}{2},n|2m}(I|i+N-1,J), \end{aligned}$$
(A.14)
$$\begin{aligned} \Xi _{g,n|2m}[k,l,I|J]&=F_{g-1,n+2|2m}(k,l,I|J)\nonumber \\&\;\;\;\;+\sum _{g_1+g_2=g}\sum _{\begin{array}{c} I_1\cup I_2=I \\ J_1\cup J_2=J \end{array}}(-1)^{\rho }F_{g_1,n_1+1|2m_1}(k,I_1|J_1)\nonumber \\&\quad \quad F_{g_2,n_2+1|2m_2}(l,I_2|J_2), \end{aligned}$$
(A.15)
$$\begin{aligned} \Xi _{g,n|2m}[I|k,l,J]&=-F_{g-1,n|2m+2}(I|k,l,J) +\sum _{g_1+g_2=g}\sum _{\begin{array}{c} I_1\cup I_2=I \\ J_1\cup J_2=J \end{array}}(-1)^{\rho }\nonumber \\&\quad \quad F_{g_1,n_1|2m_1}(I_1|k,J_1)F_{g_2,n_2|2m_2}(I_2|l,J_2), \end{aligned}$$
(A.16)
$$\begin{aligned} \Xi _{g,n|2m}[k,I|l,J]&=F_{g-1,n+1|2m}(k,I|l,J) +\sum _{g_1+g_2=g}\sum _{\begin{array}{c} I_1\cup I_2=I \\ J_1\cup J_2=J \end{array}}(-1)^{\rho }\nonumber \\&\quad \quad F_{g_1,n_1+1|2m_1}(k,I_1|J_1)F_{g_2,n_2|2m_2}(I_2|l,J_2). \end{aligned}$$
(A.17)

Then, order by order in \(\hbar \) as well as in variables \(x^j,\theta ^j\), we find from \(H_i^2Z=0\) a sequence of constraints on the free energy \(F_{g,n+1|2m}\) for \(2g+n+2m-2>0\) with \((g,n,m)\ne (1,0,0)\) as follows:

$$\begin{aligned} 0=&\,\Xi _{g,n+1|2m}[i,I|J]+\sum _{k,l\ge 0}\left( C_i^{k,l|}\Xi _{g,n|2m}^{(2)}[k,l,I|J]+C_i^{|k,l}\Xi _{g,n|2m}^{(2)}[I|k,l,J]\right) \nonumber \\&+\sum _{k\ge 0}\left( \sum _{l=1}^ni_lC_i^{-i_l,k|}F_{g,n|2m}(k,I\backslash i_l|J)+\sum _{l=1}^{2m}(-1)^{l-1}\frac{C_i^{|-j_l-2f,k}}{{1+\delta _{f,0}\delta _{j_l,0}}}F_{g,n|2m}(I|k,J\backslash j_l)\right) , \end{aligned}$$
(A.18)

where the \(\delta _{f,0}\delta _{j_l,0}\) in the last term is a consequence of the fermionic zero mode \(\Gamma _0\). Similarly, \(F_i^2Z=0\) gives a sequence of constraints for \(F_{g,n|2m}\) for \(2g+n+2m-2>1\) with \(m\ge 1\)

$$\begin{aligned} 0&=\,\Xi _{g,n|2m}[I|i,J]+\sum _{k,l\ge 0}C_i^{k|l}\Xi _{g,n|2m}^{(2)}[k,I|l,J]\nonumber \\&\quad +\sum _{k\ge 0}\left( \sum _{l=1}^ni_lC_i^{-i_l|k}F_{g,n-1|2m}(I\backslash i_l|k,J)\right. \nonumber \\&\quad \left. +\sum _{l=1}^{2m-1}(-1)^{l-1}\frac{C_i^{k|-j_l-2f}}{1+\delta _{f,0}\delta _{j_l,0}}F_{g,n+1|2m-2}(k,I|J\backslash j_l)\right) . \end{aligned}$$
(A.19)

We now will show that exactly the same equations can be derived for \({{\hat{F}}}_{g,n|2m}\) for \(2g+n+2m-2>0\) with \((g,n,m)\ne (1,1,0)\) from the abstract super loop equations. The abstract loop equations imply that

$$\begin{aligned} \forall i\in {\mathbb {Z}}_{\ge 1},\;\;\;\;0&=\underset{z=0}{\text {Res}}\,\frac{z^{i+N}}{\mathrm{d}z}\left( {\mathcal {Q}}_{g,n+1|2m}^{BB}(z,I|J)+{\mathcal {Q}}_{g,n+1|2m}^{FF}(z,I|J)\right) ., \end{aligned}$$
(A.20)
$$\begin{aligned} 0&=\underset{z=0}{\text {Res}}\,\frac{z^{i+N+2f-1}\Theta ^{F}_z}{\mathrm{d}z}\left( {\mathcal {Q}}_{g,n+1|2m}^{BF}(z,I|J)\right) , \end{aligned}$$
(A.21)

where the extra power of \(z^{2f-1}\) is inserted because \((\Theta _z^R)^2=zdz\) whereas \((\Theta _z^{NS})^2=\mathrm{d}z\).

Let us compute terms that involve \(\omega _{0,1|0}\) in (A.20). Since \(\omega _{g,n|2m}\) respects polarization by definition, we find that

$$\begin{aligned}&\underset{z=0}{\text {Res}}\,\frac{z^{i+N}}{dz}\omega _{0,1|0}(z|)\omega _{g,n+1|2m}(z,I|J)\nonumber \\&=\sum _{l>-(N-1)}\sum _{i_0>0}\underset{z=0}{\text {Res}}\,z^{i+N}\left( z^{l-1}+\sum _{p>0}\frac{\phi _{l p}}{l}z^{p-1}\right) \left( z^{-i_0-1}+\sum _{q>0}\frac{\phi _{i_0 q}}{i_0}z^{q-1}\right) dz\nonumber \\&\times \tau _l{{\hat{F}}}_{g,n+1|2m}(i_0,I|J)\bigotimes _{k=1}^nd\xi _{-i_k}(z_k)\bigotimes _{l=1}^{2m}\eta _{-j_l}(u_l,\theta _l)\nonumber \\&=\sum _{k\ge 0}C_kF_{g,n+1|2m}(i+k,I|J)\bigotimes _{k=1}^nd\xi _{-i_k}(z_k)\bigotimes _{l=1}^{2m}\eta _{-j_l}(u_l,\theta _l), \end{aligned}$$
(A.22)

where we used that \(\phi _{kl}=0\) for any \(l\le 0\) and \(C_k\) agrees with (A.6). Note that \(C_k\) depends on \(\phi _{kl}\) due to nonzero \(\tau _{l<1}\) unlike (A.37) in [12, Appendix A.2]. Next, terms with \(\omega _{\frac{1}{2},1|0}\) in (A.20) are

$$\begin{aligned}&\underset{z=0}{\text {Res}}\,\frac{z^{i+N}}{dz}\omega _{\frac{1}{2},1|0}(z|)\omega _{g-\frac{1}{2},n+1|2m}(z,I|J)\nonumber \\&=\sum _{k\ge 0}C'_kF_{g-\frac{1}{2},n+1|2m}(i+k,I|J)\bigotimes _{k=1}^nd\xi _{-i_k}(z_k)\bigotimes _{l=1}^{2m}\eta _{-j_l}(u_l,\theta _l). \end{aligned}$$
(A.23)

Also, the \(Q_0\)-dependent terms in (A.20) give

$$\begin{aligned}&\frac{1}{2}\left( \underset{{{\tilde{z}}}\rightarrow 0}{\mathrm{Res}}\,\omega _{\frac{1}{2},1|0}({{\tilde{z}}})\right) {\mathcal {D}}_z\cdot \omega _{g-\frac{1}{2},n+1|2m}(z,I|J)\nonumber \\&=-\frac{1}{2}Q_0(i+N)(F_{g-\frac{1}{2},n+1|2m}(N+i-1,I|J)\bigotimes _{k=1}^nd\xi _{-i_k}(z_k)\bigotimes _{l=1}^{2m}\eta _{-j_l}(u_l,\theta _l). \end{aligned}$$
(A.24)

The sum of (A.22), (A.23), and (A.24) precisely agrees with the first term in (A.18), i.e. \(\Xi _{g,n+1|2m}[i,I|J]\) when we drop the \(\bigotimes d\xi _I\otimes \bigotimes \eta _J\) factor.

Similarly, terms involving \(\omega _{0,1|0}\) \(\omega _{\frac{1}{2},1|0}\), and the \(Q_0\)-dependent terms in (A.21) are, respectively, computed as

$$\begin{aligned}&\underset{z=0}{\text {Res}}\,\frac{z^{i+N+2f-1}\Theta ^{F}_z}{dz}\omega _{0,1|0}(z|)\omega _{g,n|2m}(I|z,J)\nonumber \\&\quad =\sum _{k\ge 0}C_kF_{g,n|2m}(I|i+k,J)\bigotimes _{k=1}^nd\xi _{-i_k}(z_k)\bigotimes _{l=2}^{2m}\eta _{-j_l}(u_l,\theta _l), \end{aligned}$$
(A.25)
$$\begin{aligned}&\underset{z=0}{\text {Res}}\,\frac{z^{i+N+2f-1}\Theta ^{F}_z}{dz}\omega _{\frac{1}{2},1|0}(z|)\omega _{g-\frac{1}{2},n|2m}(I|z,J)\nonumber \\&\quad =\sum _{k\ge 0}C'_kF_{g-\frac{1}{2},n|2m}(I|i+k,J)\bigotimes _{k=1}^nd\xi _{-i_k}(z_k)\bigotimes _{l=2}^{2m}\eta _{-j_l}(u_l,\theta _l). \end{aligned}$$
(A.26)
$$\begin{aligned}&\underset{z=0}{\text {Res}}\,\frac{z^{i+N+2f-1}\Theta ^{F}_z}{dz}\left( \underset{{{\tilde{z}}}\rightarrow 0}{\mathrm{Res}}\,\omega _{\frac{1}{2},1|0}({{\tilde{z}}})\right) \nonumber \\&\qquad \times \left( {\mathcal {D}}_z\cdot \omega _{g-\frac{1}{2},n|2m}(I|z,J)+\frac{1-2f}{2}d\xi _0(z)\omega _{g-\frac{1}{2},n|2m}(I|z,J)\right) \nonumber \\&\quad =-Q_0(i+N+\frac{1-2f}{2})(F_{g-\frac{1}{2},n+1|2m}(N+i-1,I|J)\bigotimes _{k=1}^nd\xi _{-i_k}(z_k)\bigotimes _{l=2}^{2m}\eta _{-j_l}(u_l,\theta _l). \end{aligned}$$
(A.27)

The sum of (A.25), (A.26), and (A.27) precisely agrees with the first term in (A.19), i.e. \(\Xi _{g,n|2m}[I|i,J]\) when we drop the \(\bigotimes d\xi _I\otimes \bigotimes \eta _J\) factor.

Computations for the rest of the terms are completely parallel to those in [12, Appendix A.2], but here are even simpler thanks to the absence of the involution operator \(\sigma \). Thus, we omit tedious yet trivial computations and refer to the reader [12]. As a computational note, the difference between \((\Theta _z^R)^2=zdz\) and \((\Theta _z^{NS})^2=dz\) should be taken carefully. After all, one finds that \({\hat{F}}_{g,n|2m}\) satisfy precisely the same set of equations as the one that \(F_{g,n|2m}\) do, i.e. (A.18) and (A.19). Since uniqueness of solution is clear, \({\hat{F}}_{g,n|2m}=F_{g,n|2m}\). This proves Theorem 3.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osuga, K. Super topological recursion and Gaiotto vectors for superconformal blocks. Lett Math Phys 112, 48 (2022). https://doi.org/10.1007/s11005-022-01541-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01541-2

Keywords

Mathematics Subject Classification

Navigation