Skip to main content
Log in

Instantons and 2d superconformal field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A recently proposed correspondence between 4-dimensional \( \mathcal{N} = 2 \) SUSY SU(k) gauge theories on \( {{{{\mathbb{R}^4}}} \left/ {{{\mathbb{Z}_m}}} \right.} \) and SU(k) Toda-like theories with Z m parafermionic symmetry is used to construct four-point \( \mathcal{N} = 1 \) super Liouville conformal block, which corresponds to the particular case k = m = 2.

The construction is based on the conjectural relation between moduli spaces of SU(2) instantons on \( {{{{\mathbb{R}^4}}} \left/ {{{\mathbb{Z}_2}}} \right.} \) and algebras like \( \widehat{\text{gl}} {(2)_2} \times \mathcal{N}\mathcal{S}\mathcal{R} \). This conjecture is confirmed by checking the coincidence of number of fixed points on such instanton moduli space with given instanton number N and dimension of subspace degree N in the representation of such algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4 d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Taki, On AGT conjecture for pure super Yang-Mills and W-algebra, JHEP 05 (2011) 038 [arXiv:0912.4789] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [SPIRES].

    Article  ADS  Google Scholar 

  7. T. Nishioka and Y. Tachikawa, Para-Liouville/Toda central charges from M5-branes, Phys. Rev. D 84 (2011) 046009 [arXiv:1106.1172] [SPIRES].

    ADS  Google Scholar 

  8. G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and Super Liouville Conformal Field Theories, arXiv:1106.2505 [SPIRES].

  9. H. Nakajima, Instantons on ALE spaces, quiver varietie, and Kac-Moody algebras, Duke Math. 76 (1994) 365.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Nakajima and K. Yoshioka, Instanton counting on blowup. I, Invent. Math 162 (2005) 313 [math/0306198].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. M. Varagnolo and E. Vasserot, On the K-theory of the cyclic quiver variety, Internat. Math. Res. Notices 18 (1999) 1005.

    Article  MathSciNet  Google Scholar 

  12. B. Feigin and A. Tsymbaliuk, Heisenberg action in the equivariant K-theory of Hilbert schemes via scuffle algebra, arXiv:0904.1679.

  13. D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].

  14. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  15. R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  16. U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multi-instanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. A.G. Kuznetsov, Quiver varieties and Hilbert schemes, Mosc. Math. J. 7 (2007) 673 [math/0111092].

    MATH  MathSciNet  Google Scholar 

  18. V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolsky, On combinatorial expansion of the conformal blocks arising from AGT conjecture, arXiv:1012.1312 [SPIRES].

  19. A. Belavin and V. Belavin, AGT conjecture and integrable structure of conformal field theory for c = 1, Nucl. Phys. B 850 (2011) 199 [arXiv:1102.0343] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. V.A. Fateev and A.B. Zamolodchikov, Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z(n) invariant statistical systems, Sov. Phys. JETP 62 (1985) 215. [Zh.Eksp.Teor.Fiz.89:380–399,1985], SPHJA,62,215;

    MathSciNet  Google Scholar 

  21. F. Fucito, J.F. Morales and R. Poghossian, Multi instanton calculus on ALE spaces, Nucl. Phys. B 703 (2004) 518 [hep-th/0406243] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  23. A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  24. A.A. Belavin and V.E. Zakharov, Yang-Mills equations as inverse scattering problem, Phys. Lett. B 73 (1978) 53 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. M.F. Atiyah and R.S. Ward, Instantons and algebraic geometry, Commun. Math. Phys. 55 (1977) 117 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. V. Drinfeld, Yu. Manin, Descriptions of instantons, Comm. Math. Phys. 6 (1978) 177.

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. A.M. Polyakov, Quantum geometry of fermionic strings, Phys. Lett. B 103 (1981) 211 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  29. A. Belavin, V. Belavin, A. Neveu and A. Zamolodchikov, Bootstrap in supersymmetric Liouville field theory. I: NS sector, Nucl. Phys. B 784 (2007) 202 [hep-th/0703084] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  30. L. Hadasz, Z. Jaskólski and P. Suchanek, Recursion representation of the Neveu-Schwarz superconformal block, JHEP 03 (2007) 032 [hep-th/0611266] [SPIRES].

    Article  ADS  Google Scholar 

  31. V.A. Belavin, N = 1 SUSY conformal block recursive relations, hep-th/0611295 [SPIRES].

  32. V.A. Belavin, On the N = 1 super Liouville four-point functions, Nucl. Phys. B 798 (2008) 423 [arXiv:0705.1983] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Hadasz, Z. Jaskolski and P. Suchanek, Elliptic recurrence representation of the N = 1 Neveu-Schwarz blocks, Nucl. Phys. B 798 (2008) 363 [arXiv:0711.1619] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  34. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. R.C. Rashkov and M. Stanishkov, Three-point correlation functions in N = 1 Super Lioville Theory, Phys. Lett. B 380 (1996) 49 [hep-th/9602148] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  36. R.H. Poghosian, Structure constants in the N = 1 super-Liouville field theory, Nucl. Phys. B 496 (1997) 451 [hep-th/9607120] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bershtein.

Additional information

ArXiv ePrint: 1106.4001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belavin, A., Belavin, V. & Bershtein, M. Instantons and 2d superconformal field theory. J. High Energ. Phys. 2011, 117 (2011). https://doi.org/10.1007/JHEP09(2011)117

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)117

Keywords

Navigation