Skip to main content

Advertisement

Log in

Challenges in marine, soft-sediment benthoscape ecology

  • Perspective
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

In this paper I address three sets of challenges that face ecologists who are studying soft-sediment benthic landscapes (or benthoscapes). These include (a) development of technology and analytical approaches for sea floor mapping and quantifying benthoscape structure, (b) development of benthoscape ecology theory that integrates ideas from terrestrial and other marine systems, but focuses on the unique aspects of these environments, and (c) making empirical headway. Coordinated efforts in all three areas are needed to make progress in understanding soft-sediment systems, which arguably comprise the largest set of landscapes on the earth. In particular, much more work is needed in relating biotic patterns to the actual spatial structural aspects of soft-sediment benthoscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allee RJ, Dethier M, Brown D et al (2000) Marine and estuarine ecosystem and habitat classification. NOAA Technical Memorandum NMFS-F/SPO-43, p 43

  • Aronson RB, Precht WF (1995) Landscape patterns of reef coral diversity: a test of the intermediate disturbance hypothesis. J Exp Mar Biol Ecol 192:1–14

    Article  Google Scholar 

  • Auster PJ, Joy K, Valentine PC (2001) Fish species and community distributions as proxies for seafloor habitat distributions: the Stellwagen Bank National Marine Sanctuary example (Northwest Atlantic, Gulf of Maine). Environ Biol Fish 60:331–346

    Article  Google Scholar 

  • Auster PJ, Lindholdm J, Valentine PC (2003) Variation in habitat use by juvenile Acadian redfish, Sebastes fasciatus. Environ Biol Fish 68:381–389

    Article  Google Scholar 

  • Azovsky AI, Chertoprood MV, Kucheruk NV et al (2000) Fractal properties of spatial distribution of intertidal benthic communities. Mar Biol 136:581–590

    Article  Google Scholar 

  • Baldwin DJB, Weaver K, Schnekenburger F, Perera AH (2004) Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation. Landsc Ecol 19:255–271

    Article  Google Scholar 

  • Bartholdy J, Folving S (1986) Sediment classificationsurface type mapping in the Danish Wadden Sea by remote sensing. Neth J Sea Res 20:337–345

    Article  Google Scholar 

  • Bradbury RH, Reichelt RE, Green DG (1984) Fractals in ecology: methods and interpretation. Mar Ecol Progr Ser 14:295–296

    Article  Google Scholar 

  • Brown CJ, Cooper KM, Meadows WJ et al (2002) Small-scale mapping of sea-bed assemblages in the eastern English Channel using sidescan sonar and remote sampling techniques. Estuar Coast Shelf Sci 54:263–278

    Article  Google Scholar 

  • Brown CJ, Mitchell A, Limpenny DS et al (2005) Mapping seabed habitats in the Firth of Lorn off the west coast of Scotland: evaluation and comparison of habitat maps produced using the acoustic ground-discrimination system, RoxAnn, and sidescan sonar. ICES J Mar Sci 62:790–802

    Article  Google Scholar 

  • Cochrane GR, Lafferty KD (2002) Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California. Cont Shelf Res 22:683–690

    Article  Google Scholar 

  • Cutter GR Jr, Rzhanov Y, Mayer LA (2003) Automated segmentation of seafloor bathymetry from multibeam echosounder data using local Fourier histogram texture features. J Exp Mar Biol Ecol 285–286:355–370

    Article  Google Scholar 

  • Dayton PK (1994) Community landscape: scale and stability in hard bottom marine communities. In: Giller PS, Hildrew AG, Raffaelli DG (eds) Aquatic ecology: scales, patterns and processes. Blackwell, Oxford, pp 289–332

    Google Scholar 

  • DeAlteris JT (1988) Application of hydroacoustics to the mapping of subtidal oyster reefs. J Shellfish Res 7:41–45

    Google Scholar 

  • Diaz RJ, Solan M, Valente RM (2004) A review of approaches for classifying benthic habitats and evaluating habitat quality. J Environ Manage 73:165–181

    Article  PubMed  Google Scholar 

  • Downing JA, Rath LC (1988) Spatial patchiness in the lacustrine sedimentary environment. Limnol Oceanogr 33:447–458

    Article  CAS  Google Scholar 

  • Ellingsen KE (2002) Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Mar Ecol Progr Ser 232:15–27

    Article  Google Scholar 

  • Ellingsen KE, Gray JS (2002) Spatial patterns of benthic diversity–is there a latitudinal gradient along the Norwegian continental shelf? J Animal Ecol 71:373–389

    Article  Google Scholar 

  • Ellingsen KE, Gray JS, Bjøønbom E (2002) Acoustic classification of seabed habitats using the QTC VIEW™ system. ICES J Mar Sci 59:825–835

    Article  Google Scholar 

  • Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182

    Article  Google Scholar 

  • Fisher SG, Grimm NB, Marti E, Gomez R (1998) Hierarchy, spatial configuration, and nutrient cycling in a desert stream. Austr J Ecol 23:41–52

    Article  Google Scholar 

  • Fonseca M, Bell SS, Robbins BD (2006) Foreword. Estuar Coast Shelf Sci 68:380–382

    Article  Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Foster-Smith RL, Sotheran IS (2003) Mapping marine benthic biotopes using acoustic ground discrimination systems. Int J Remote Sens 24:2761–2784

    Google Scholar 

  • Fox CG, Hayes DE (1985) Quantitative methods for analyzing the roughness of the seafloor. Rev Geophys 23:1–48

    Article  Google Scholar 

  • Freitas R, Rodrigues AM, Quintino V (2003) Benthic biotopes remote sensing using acoustics. J Exp Mar Biol Ecol 285–286:339–353

    Article  Google Scholar 

  • Friedlander AM, Boehlert GW, Field ME (1999) Sidescan-sonar mapping of benthic trawl marks on the shelf and slope off Eureka, California. Fish Bull 97:786–801

    Google Scholar 

  • Gaines S, Roughgarden J (1985) Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc Natl Acad Sci USA 82:3707–3711

    Article  PubMed  CAS  Google Scholar 

  • Gardner JV, Butman PB, Mayer LA et al (1998) Mapping US continental shelves. Sea Tech 39:10–17

    Google Scholar 

  • Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogra Mar Biol Ann Rev 30:149–190

    Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    Article  Google Scholar 

  • Greene GH, Yoklavich MM, Starr RM et al (1999) A classification scheme for deep seafloor habitats. Oceanologica Acta 22:663–678

    Article  Google Scholar 

  • Goff JA, Olson HC, Duncan CS (2000) Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin. Geo-Mar Lett 20:43–49

    Article  Google Scholar 

  • Gosz JR (1991) Fundamental ecological characteristics of landscape boundaries. In: Holland MM, Naiman RJ, Risser PG (eds) Role of landscape boundaries in the management and restoration of changing environments. Chapman and Hall, New York, pp 8–30

    Google Scholar 

  • Hall SJ, Raffaelli D, Thrush SF (1994) Patchiness and disturbance in shallow water benthic assemblages. In: Giller PS, Hildrew AG, Raffaelli DG (eds) Aquatic ecology: scales, patterns and processes. Blackwell, Oxford, pp 333–375

    Google Scholar 

  • Halley JM, Hartley S, Kallimanis AS et al (2004) Uses and abuses of fractal methodology in ecology. Ecol Lett 7:254–271

    Article  Google Scholar 

  • Hewitt JE, Thrush SF, Legendre P et al (2004) Mapping of marine soft-sediment communities: integrated sampling for ecological interpretation. Ecol Appl 14:1203–1216

    Article  Google Scholar 

  • Hewitt JE, Thrush SF, Halliday J et al (2005) The importance of small-scale habitat structure for maintaining beta diversity. Ecology 86:1619–1626

    Article  Google Scholar 

  • Josefson AB, Conley DJ (1997) Benthic responses to a pelagic front. Mar Ecol Prog Ser 147:49–62

    Article  Google Scholar 

  • Jumars PA, Jackson DR, Gross TF et al (1996) Acoustic remote sensing of benthic activity: a statistical approach. Limnol Oceanogr 41(6):1220–1241

    Article  Google Scholar 

  • Kendall MS, Jensen OP, Alexander C et al (2005) Benthic mapping using sonar, video transect, and an innovative approach to accuracy assessment: a characterization of bottom features in the Georgia Bight. J Coast Res 21:1154–1165

    Article  Google Scholar 

  • Kenny AJ, Cato I, Desprez M et al (2003) An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J Mar Sci 60:411–418

    Article  Google Scholar 

  • Knebel HJ, Poppe LJ (2000) Sea-floor environments within Long Island Sound: a regional overview. J Coast Res 16:533–550

    Google Scholar 

  • Kostylev VE, Todd BJ, Fader GBJ et al (2001) Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar Ecol Progr Ser 219:121–137

    Article  Google Scholar 

  • Kvitek RG, Oliver JS (1986) Side-scan sonar estimates of the utilization of gray whale feeding grounds along Vancouver Island, Canada. Cont Shelf Res 6:639–654

    Article  Google Scholar 

  • Langton RW, Auster PJ, Schneider DC (1995) A spatial and temporal perspective on research and management of groundfish in the northwest Atlantic. Rev Fish Sci 3:201–229

    Article  Google Scholar 

  • Legendre P, Thrush SF, Cummings VJ et al (1997) Spatial structure of bivalves in a sandflat: scale and generating processes. J Exp Mar Biol Ecol 216:99–128

    Article  Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297

    Article  CAS  Google Scholar 

  • Li B (2000) Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol Model 132:33–50

    Article  Google Scholar 

  • Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19:389–399

    Article  Google Scholar 

  • McRea JE Jr, Greene HG, O’Connell VM et al (1999) Mapping marine habitats with high resolution sidescan sonar. Oceanol Acta 22:679–686

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC et al (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst

  • Mayer L, Hughes Clarke JE, Dijkstra S (1999) Multibeam sonar: potential applications for fisheries research. J Shellfish Res 17:1463–1467

    Google Scholar 

  • Milne BT (1991) Lessons from applying fractal models to landscape patterns. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New York, pp 199–239

    Google Scholar 

  • Morrisey DJ, Howitt L, Underwood AJ, Stark JS (1992) Spatial variation in soft-sediment benthos. Mar Ecol Progr Ser 81:197–204

    Article  Google Scholar 

  • Morrison MA, Thrush SF, Budd R (2001) Detection of acoustic class boundaries in soft sediment systems using the seafloor acoustic discrimination system QTC VIEW. J Sea Res 46:233–243

    Article  Google Scholar 

  • Mortensen PB, Hovland MT, Fossa JH et al (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK 81:581–597

    Article  Google Scholar 

  • Murdoch TJT, Aronson RB (1999) Scale-dependent spatial variability of coral assemblages along the Florida Reef Tract. Coral Reefs 18:341–351

    Article  Google Scholar 

  • Ocean Studies Board (2004) A Geospatial framework for the coastal zone: national needs for Coastal mapping and charting. National Academies Press, Washington, DC. Available online at: http://fermat.nap.edu/books/0309091764/html/

  • Palmer MW (1988) Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio 75:91–102

    Article  Google Scholar 

  • Palmer MA, Swan CM, Nelson K, Silver P, Alvestad R (2000) Streambed landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landsc Ecol 15:563–576

    Article  Google Scholar 

  • Piepenburg D, Ambrose WG Jr, Brandt A et al (1997) Benthic community patterns reflect water column process in the Northeast Water Polynya (Greenland). J Mar Syst 10:467–482

    Article  Google Scholar 

  • Pittman SJ, McAlpine CA, Pittman KM (2004) Linking fish and prawns to their environment: a hierarchical landscape approach. Mar Ecol Progr Ser 283:233–254

    Article  Google Scholar 

  • Reed JK (2002) Comparison of deep-water coral reefs and lithoherms off southeastern USA. Hydrobiologia 471:57–69

    Article  Google Scholar 

  • Rhoads DC, Germano JD (1982) Characterization of benthic processes using sediment profile imaging: an efficient method of remote ecological monitoring of the seafloor (REMOTS™ System). Mar Ecol Progr Ser 8:115–128

    Article  Google Scholar 

  • Ritters KH, O’Neill RV, Hunsaker CT et al (1995) A factor analysis of landscape pattern and structure metrics. Landsc Ecol 10:23–40

    Article  Google Scholar 

  • Robbins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9:301–303

    Article  Google Scholar 

  • Schmid PE (2000) Fractal properties of habitat and patch structure in benthic ecosystems. Adv Ecol Res 30:340–401

    Google Scholar 

  • Schneider DC (1994) Quantitative ecology: spatial and temporal scaling. Academic, San Diego

    Google Scholar 

  • Schneider DC, Walters RA, Thrush SF, Dayton PK (1997) Scale up of ecological experiments: density variation in the mobile bivalve Macoma liliana. J Exp Mar Biol Ecol 216:129–152

    Article  Google Scholar 

  • Schwinghamer P, Guigne JY, Siu WC (1996) Quantifying the impact of trawling on benthic habitat structure using high resolution acoustics and chaos theory. Can J Fish Aquat Sci 53:288–296

    Article  Google Scholar 

  • Self RFL, A’Hearn P, Jumars PA et al (2001) Effects of macrofauna on acoustic backscatter from the seabed: field manipulations in West Sound, Orcas Island, Washington, USA. J Mar Res 59:991–1020

    Article  Google Scholar 

  • Smith GF, Bruce DG, Roach EB (2001) Remote acoustic habitat assessment techniques used to characterize the quality and extent of oyster bottom in the Chesapeake Bay. Mar Geod 24:171–189

    Article  Google Scholar 

  • Smith TB, Wayne RK, Girman DJ et al (1997) A role of ecotones in generating rainforest biodiversity. Science 276:1855–1857

    Article  CAS  Google Scholar 

  • Snelgrove PVR (1999) Getting to the bottom of marine biodiversity: sedimentary habitats. Bioscience 49:129–138

    Article  Google Scholar 

  • Snover ML, Commito JA (1998) The fractal geometry of Mytilus edulis spatial distribution in a soft-bottom system. J Exp Mar Biol Ecol 223:53–64

    Article  Google Scholar 

  • Steele J (1989) The ocean landscape. Landsc Ecol 3:185–192

    Article  Google Scholar 

  • Stevens T, Connolly RM (2004) Testing the utility of abiotic surrogates for marine mapping at scales relevant to management. Biol Conserv 119:351–362

    Article  Google Scholar 

  • Sullivan M, Cowen R, Able K et al (2000) Spatial scaling of recruitment in four continental shelf fishes. Mar Ecol Prog Ser 207:141–154

    Article  Google Scholar 

  • Tengberg A, Almroth E, Hall P (2003) Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology. J Exp Mar Biol Ecol 285/286:119–142

    Article  Google Scholar 

  • Thrush SF (1991) Spatial patterns in soft-bottom communities. Trends Ecol Evol 6:75–79

    Article  Google Scholar 

  • Thrush SF, Schneider DC, Legendre P et al (1997) Scaling-up from experiments to complex ecological systems: where to next? J Exp Mar Biol Ecol 216:243–254

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Cummings VJ et al (1998) Disturbance of the marine benthic habitat by commercial fishing: impacts at the scale of the fishery. Ecol Appl 8:866–879

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Funnell1 GA et al (2001) Fishing disturbance and marine biodiversity: role of habitat structure in simple soft-sediment systems. Mar Ecol Progr Ser 221:255–264

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New York

    Google Scholar 

  • Twichell DC, Zajac RN, Poppe LJ et al (1998) Side scan sonar image, surficial geologic interpretation and bathymetry of the Long Island Sound seafloor off Milford, Connecticut. Geologic Investigations Series Map I-2632. U.S. Geological Survey, U.S. Department of the Interior

  • van der Wal D, Herman PMJ, Ysebaert T (2004) Space-borne synthetic aperture radar of intertidal flat surfaces as a basis for predicting benthic macrofauna distribution. EARSeL eProceedings 3(1):69–80

    Google Scholar 

  • Valentine PC, Middleton TJ, Fuller SJ (2001) Sea floor maps showing topography, sun-illuminated topography, and backscatter intensity of the Stellwagengen Bank National Marine Sanctuary region off Boston, Massachusetts: U.S. Geological Survey Open-File Report 00–410

  • Valentine PC, Todd BJ, Kostylev VE (2005) Classification of marine sublittoral habitats, with application to the northeastern North America region. Am Fish Soc Symp 41:183–200

    Google Scholar 

  • Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987

    Article  Google Scholar 

  • Watling L, Norse EA (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clear cutting. Conserv Biol 12:1180–1197

    Article  Google Scholar 

  • Warwick RM, Uncles RJ (1980) Distribution of benthic macrofauna associations in the Bristol Channel in relation to tidal stress. Mar Ecol Progr Ser 92:221–231

    Article  Google Scholar 

  • Wiens JA (2002) River landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515

    Article  Google Scholar 

  • Whitlatch RB, Osman RW (1998) A new device to study benthic invertebrate recruitment. Limnol Oceanogr 43:516–523

    Article  Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc Ecol 19:125–138

    Article  Google Scholar 

  • Yoklavich M, Greene H, Cailliet G et al (2000) Habitat associations of deep-water rockfishes in a submarine canyon: an example of a natural refuge. Fish Bull 98:625–641

    Google Scholar 

  • Zajac RN (1999) Understanding the seafloor landscape in relation to assessing and managing impacts on coastal environments. In: Gray JS, Ambrose W Jr, Szaniawska A (eds) Biogeochemical cycling and sediment ecology. Kluwer Publishing, Dordrecht, pp 211–227

    Google Scholar 

  • Zajac RN (2001) Organism–sediment relations at multiple spatial scales: implications for community structure and responses to disturbance. In: Aller J, Woodin SA, Aller RC (eds) Sediment-organism interactions. University of South Carolina Press, Columbia, pp 119–139

    Google Scholar 

  • Zajac RN, Whitlatch RB, Thrush SF (1998) Recolonization and succession in soft-sediment infaunal communities: the spatial scale of controlling factors. Hydrobiologia 375/376:227–240

    Article  Google Scholar 

  • Zajac RN, Lewis RS, Poppe LJ et al (2000) Relationships among sea-floor structure and benthic communities in Long Island Sound at regional and benthoscape scales. J Coastl Res 16:627–640

    Google Scholar 

  • Zajac RN, Lewis RS, Poppe LJ et al (2003) Responses of infaunal populations to benthoscape patch structure and the potential importance of transition zones. Limnol Oceanogr 48:829–842

    Article  Google Scholar 

Download references

Acknowledgments

Mary DiGiacomo-Cohen kindly provided the digitized interpretation of the Fishers Island Sound side scan mosaic used in Fig. 4. The ideas presented here benefitted from the comments and suggestions of two anonymous reviewers, and discussions with Bob Whitlatch and Rick Osman. My thanks to them and also to Fran, Julia, and Katya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman N. Zajac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zajac, R.N. Challenges in marine, soft-sediment benthoscape ecology. Landscape Ecol 23 (Suppl 1), 7–18 (2008). https://doi.org/10.1007/s10980-007-9140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-007-9140-4

Keywords

Navigation