Skip to main content

Australian Seagrass Seascapes: Present Understanding and Future Research Directions

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Seagrass seascapes are 100s m2 to 1000s of km2 coastal regions in nearshore, sandy to muddy benthic environments that are characterized by the presence of seagrasses. Here we explore the development of seagrass seascape research in Australia. Determining the distribution of seagrasses started with mapping their extent, but improvements in remote sensing and statistical modelling has allowed us assess the large scale spatial distribution and temporal dynamics of seagrass seascapes. We use a case study from Moreton Bay, near Brisbane, Queensland to demonstrate changes in seagrass meadows over time. Terrestrial landscape indices and their use in seagrass studies is reviewed. Some indices perform better to summarize patch to meadow scale changes in the distribution and structure of seagrasses. A case-study is then presented, comparing landscape indices calculated from observed changes in seagrass patches and meadows to a spatially-explicit model simulation, to explore the drivers for changes in the seagrass seascape’s demographic processes, clonal growth and recruitment from seeds. The role of landscape structure in the movement and abundance of associated fauna in seagrass seascapes using landscape approaches is then reviewed. This is followed by a summary outlining directions for future research that combine landscape ecology and remote sensing techniques with population and community biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almela ED, Marbà N, Álvarez E, Santiago R, Martínez R, Duarte CM (2008) Patch dynamics of the Mediterranean seagrass Posidonia oceanica: implications for recolonisation process. Aq Bot 89:397–403

    Article  Google Scholar 

  • Bax N, Kloser R, Williams A, Gowlett-Holmes K, Ryan T (1999) Seafloor habitat definition for spatial management in fisheries: a case study on the continental shelf of southeast Australia. Oceanol Acta 22:705–720

    Article  Google Scholar 

  • Bell SS, Hicks GRF (1991) Marine landscapes and faunal recruitment a field test with seagrasses and copepods. Mar Ecol Prog Ser 73:61–68

    Article  Google Scholar 

  • Bell SB, Robbins BD, Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosystems 2:493–504

    Article  Google Scholar 

  • Bell SS, Brooks RA, Robbins BD, Fonseca MS, Hall MO (2001) Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol Cons 100:115–123

    Article  Google Scholar 

  • Bell SS, Fonseca MS, Stafford NB (2006) Seagrass ecology: new contributions from a landscape perspective. In: Larkum AWD, Robert JO, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Dordrecht, Springer, Netherlands, pp 625–645

    Google Scholar 

  • Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403

    Article  Google Scholar 

  • Boström C, Törnroos A, Bonsdorff E (2010) Invertebrate dispersal and habitat heterogeneity: expression of biological traits in a seagrass landscape. J Exp Mar Biol Ecol 390:106–117

    Article  Google Scholar 

  • Bowden DA, Rowden AA, Attrill MJ (2001) Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. JExp Mar Biol Ecol 259:133–154

    Article  Google Scholar 

  • Brouns JJ (1987) Growth patterns in some Indo-West-Pacific seagrasses. Aq Bot 28:39–61

    Article  Google Scholar 

  • Cambridge ML (1999) Growth strategies of Rottnest Island seagrasses. In DI Walker and FE Wells (eds) The Seagrass Flora and Fauna of Rottnest Island, Western Australia. Western Australia Museum pp 1–24

    Google Scholar 

  • Cambridge ML, Bastyan GR, Walker DI (2002) Recovery of Posidonia meadows in Oyster Harbour Southwestern Australia. Bull Mar Sci 71:1279–1289

    Google Scholar 

  • Campey ML, Kendrick GA, Walker DI (2002) Interannual and small-scale spatial variability in sexual reproduction of the seagrasses Posidonia coriacea and Heterozostera tasmanica, southwestern Australia. Aq Bot 74:287–297

    Article  Google Scholar 

  • Canal-Vergés P, Potthoff M, Hansen FT, Holmboe N, Rasmussen EK, Flindt MR (2014) Eelgrass re-establishment in shallow estuaries is affected by drifting macroalgae—evaluated by agent-based modeling. Ecol Model 272:116–128

    Article  Google Scholar 

  • Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007) Seagrasses of south–west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. JExp Mar Biol Ecol 350:21–45

    Article  Google Scholar 

  • Clarke SM, Kirkman H (1989) Seagrass dynamics. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of the seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier/North Holland, Amsterdam, pp 304–345

    Google Scholar 

  • Connolly RM, Hindell JS (2006) Review of nekton patterns and ecological processes in seagrass landscapes. Estuar Coast Shelf Sci 68:433–444

    Article  Google Scholar 

  • D’Eon R, Glen SM (2000) Perceptions of landscape patterns: do the numbers count? Forest Chronicle 76:475–480

    Article  Google Scholar 

  • DeAngelis DL, Grimm V (2014) Individual-based models in ecology after four decades. F1000Prime Reports, vol 6, p 39

    Google Scholar 

  • Dekker AG, Brando VE, Anstee JM (2005) Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ 97:415–433

    Article  Google Scholar 

  • Duarte CM, Sand-Jensen K (1990) Seagrass colonization: patch formation and patch growth of Cymodocea nodosa. Mar Ecol Prog Ser 65:193–200

    Article  Google Scholar 

  • Duarte CM, Terrados J, Agawin NSR, Fortes MD, Bach S, Kenworthy WJ (1997) Response of a mixed Phillippine seagrass meadow to experimental burial. Mar Ecol Prog Ser 147:285–294

    Article  Google Scholar 

  • Durako MJ, Hall MO, Merello M (2002) Patterns of change in the seagrass dominated Florida Bay hydroscape. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem sourcebook. CRC Press, Washington DC, pp 523–537

    Google Scholar 

  • Fernández TV, Milazzo M, Badalamenti F, D’Anna G (2005) Comparison of the fish assemblages associated with Posidonia oceanica after the partial loss and consequent fragmentation of the meadow. Estuar Coast Shelf Sci 65:645–653

    Article  Google Scholar 

  • Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina. USA. Mar Ecol Prog Ser 171:109

    Article  Google Scholar 

  • Fonseca M, Whitfield PE, Kelly NM, Bell SS (2002) Modelling seagrass landscape pattern and associated ecological attributes. EcolAppl 12:218–237

    Google Scholar 

  • Frederiksen M, Krause-Jensen D, Holmer M, Laursen JS (2004a) Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting. Aquat Bot 78:147–165

    Article  Google Scholar 

  • Frederiksen M, Krause-Jensen D, Holmer M, Laursen JS (2004b) Long-term changes in area distribution of eelgrass (Zostera marina) in Danish coastal waters. Aquat Bot 78:167–181

    Article  Google Scholar 

  • Freitas R, Rodrigues AM, Quintino V (2003) Benthic biotopes remote sensing using acoustics. J Exp Marine Biol Ecol 285–286:339–353

    Article  Google Scholar 

  • Friedlander A, Nowlis JS, Sanchez JA, Appeldoorn R, Usseglio P, McCormick C, Bejarano S, Mitchell-Chui A (2003) Designing effective marine protected areas in Seaflower Biosphere Reserve, Colombia, based on biological and sociological information. Conserv Biol 17:1769–1784

    Article  Google Scholar 

  • Frost MT, Rowden AA, Attrill MJ (1999) Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquatic Conservation: Marine and Freshwater Ecosystems 9:255–263

    Article  Google Scholar 

  • Garrabou J, Riera J, Zabala M (1998) Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landscape Ecol 13:225–247

    Article  Google Scholar 

  • Garza-Perez JR, Lehmann A, Arias-Gonzalez JE (2004) Spatial prediction of coral reef habitats: integrating ecology with spatial modelling and remote sensing. Mar Ecol Prog Ser 269:141–152

    Article  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecol 7:101–110

    Article  Google Scholar 

  • Haines-Young R, Chopping M (1996) Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geogr 20:418–445

    Article  Google Scholar 

  • Hannan JC, Williams RJ (1998) Recruitment of juvenile marine fishes to seagrass habitat in a temperate Australian estuary. Estuaries 21:29–51

    Article  Google Scholar 

  • Hargis CD, Bissonette JA, David JL (1998) The behaviour of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecol 13:167–186

    Article  Google Scholar 

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164

    Article  PubMed  Google Scholar 

  • Healey D, Hovel KA (2004) Seagrass bed patchiness: effects on epifaunal communities in San Diego Bay, USA. J Exp Mar Biol Ecol 313:155–174

    Article  Google Scholar 

  • Holmes KW, Van Niel KP, Kendrick GA, Radford B (2007) Probabilistic large-area mapping of seagrass species distributions. Aquat Conserv: Mar Freshw Ecosyst 17:385–407

    Article  Google Scholar 

  • Holmes KW, Van Niel KP, Radford B, Kendrick GA, Grove SL (2008) Modelling distribution of marine benthos from hydroacoustics and underwater video. Cont Shelf Res 28:1800–1810

    Article  Google Scholar 

  • Hovel KA (2003) Habitat fragmentation in marine landscapes: relative effects of habitat cover and configuration on juvenile crab survival in California and North Carolina seagrass beds. Biol Cons 110:401–412

    Article  Google Scholar 

  • Hovel KA, Lipcius RN (2001) Habitat fragmentation in a seagrass landscape: patch size and complexity control blue crab survival. Ecology 82:1814–1829

    Article  Google Scholar 

  • Hovel KA, Lipcius RN (2002) Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. J Exp Marine Biol Ecol 271:75–98

    Article  Google Scholar 

  • Hovel KA, Regan H (2008) Using an individual-based model to examine the roles of habitat fragmentation and behavior on predator–prey relationships in seagrass landscapes. Landscape Ecol 23:75–89

    Article  Google Scholar 

  • Hovey RK, Van Niel KP, Bellchambers LM, Pember MB (2012) Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster Panulirus cygnus. PLoS ONE 7(4):e34476. https://doi.org/10.1371/journal.pone.0034476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hovey RK, Zavala Perez A, Statton J, Fraser MW, Ruiz Montoya L, Rees M, Stoddart J, Kendrick GA (2015) Strategy for assessing impacts in highly seasonal tropical seagrasses. Mar Pollut Bull 101:594–599

    Google Scholar 

  • Hutchinson GE (1953) The concept of pattern in ecology. Proc Acad Nat Sci Philadelphia 104:1–12

    Google Scholar 

  • Hyland SJ, Courtney AJ, Butler CT (1989) Distribution of seagrass in the Moreton region from Coolangatta to Noosa. Queensland Government Department of Primary Industries, Information Series Q189010. Queensland Government, Brisbane, Australia

    Google Scholar 

  • Inglis GJ (2000a) Variation in the recruitment behaviour of seagrass seeds: implications for population dynamics and resource management. Pac Conserv Biol 5:251–259

    Article  Google Scholar 

  • Inglis GJ (2000b) Disturbance-related heterogeneity in the seed banks of a marine angiosperm. J Ecol 88:88–99

    Article  Google Scholar 

  • Irlandi EA (1994) Large- and small-scale effects of habitat structure on rates of predation: how percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve. Oecologia 98:176–183

    Article  PubMed  CAS  Google Scholar 

  • Irlandi EA, Ambrose WG, Orlando BA (1995) Landscape ecology and the marine environment—how spatial configuration of seagrass habitat influences growth and survival of the bay scallop. Oikos 72:307–313

    Article  Google Scholar 

  • Jackson EL, Attrill MJ, Rowden AA, Jones MB (2006) Seagrass complexity hierarchies: influence on fish groups around the coast of Jersey (English Channel). J Exp Mar Biol Ecol 330:38–54

    Google Scholar 

  • Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15:115–130

    Article  Google Scholar 

  • Jelbart JE, Ross PM, Connolly RM (2006) Edge effects in seagrass landscapes: an experimental test using fish. Mar Ecol Prog Ser 319:93–102

    Article  Google Scholar 

  • Jorge LAB, Garcia GJ (1997) A study of habitat fragmentation in Southeastern Brazil using remote sensing and geographic information systems (GIS). For Ecol Manage 98:35–47

    Article  Google Scholar 

  • Kendrick GA, Eckersley J, Walker DI (1999) Landscape-scale changes in seagrass distribution over time: a case study from Success Bank, Western Australia. Aquat Bot 65:293–309

    Article  Google Scholar 

  • Kendrick GA, Hegge BJ, Wyllie A, Davidson A, Lord DA (2000) Changes in seagrass cover on Success and Parmelia Banks, Western Australia between 1965 and 1995. Estuar Coast Shelf Sci 50:341–353

    Article  Google Scholar 

  • Kendrick GA, Aylward M, Hegge BJ, Cambridge ML, Hillman KA, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73:75–87

    Article  Google Scholar 

  • Kendrick GA, Marba N, Duarte CM (2005a) Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuar Coast Shelf Sci 65:717–725

    Article  Google Scholar 

  • Kendrick GA, Duarte CM, Marba N (2005b) Clonality in seagrasses, emergent properties and seagrass landscapes. Mar Ecol Prog Ser 290:291–296

    Article  Google Scholar 

  • Kendrick GA, Holmes KW, Van Niel KP (2008) Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31:191–200

    Article  Google Scholar 

  • Kendrick GA, Waycott M, Carruthers T, Cambridge ML, Hovey R, Krauss S, Lavery P, Les D, Lowe R, Mascaró O, Ooi Lean Sim J, Orth RJ, Rivers D, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk JK, Verduin J (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65

    Article  Google Scholar 

  • Kendrick GA, Orth RJ, Statton J, Hovey R, Ruiz-Montoya L, Lowe R, Krauss S, Sinclair EA (2017) Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol Rev 92:921–938

    Article  PubMed  Google Scholar 

  • Kenny AJ, Cato I, Desprez M, Fader G, Schu¨ttenhelm RTE, Side J (2003) An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J Mar Sci 60:411–418

    Google Scholar 

  • Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unraveling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109

    Article  PubMed  CAS  Google Scholar 

  • Kirkman H (1985) Community structure in seagrasses in southern Western Australia. Aquat Bot 21:363–375

    Article  Google Scholar 

  • Kirkman H (1998) Pilot experiments on planting seedlings and small seagrass propagules in Western Australia. Marine Poll Bull 37:460–467

    Article  CAS  Google Scholar 

  • Kreft JU, Booth G, Wimpenny JWT (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:3275–3287

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD, West RJ (1990) Long-term changes of seagrass meadows in Botany Bay, Australia. Aquat Bot 37:55–70

    Article  Google Scholar 

  • Levin SA, Paine RT (1974) Disturbance, patch formation, and community structure. Proc Natl Acad Sci USA 71:2744–2747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li BL, Archer S (1997) Weighted mean patch size: a robust index for quantifying landscape structure. Ecol Model 102:353–361

    Article  Google Scholar 

  • Luna F, Stefannson B (2000) Economic simulations in SWARM: agent-based modelling and object oriented programming, vol 14. Kluwer Academic Publishers

    Google Scholar 

  • Lyons MB, Roelfsema CM, Phinn SR (2013) Towards understanding temporal and spatial dynamics of seagrass land—scapes using time-series remote sensing. Estuar Coast Shelf Sci 120:42–53

    Article  Google Scholar 

  • Lyons MB, Roelfsema CM, Kovacs E, Samper-Villarreal J, Saunders M, Maxwell P, Phinn SR (2015) Rapid monitoring of seagrass biomass using a simple linear modelling approach, in the field and from space. Mar Ecol Prog Ser 530:1–14

    Article  Google Scholar 

  • Marba N, Duarte CM (1995) Coupling of seagrass (Cymodocea nodosa) patch dynamics to subaqueous dune migration. J Ecol 83:381–389

    Article  Google Scholar 

  • Marba N, Duarte CM (1998) Rhizome elogation and seagrass clonal growth. Mar Ecol Prog Ser 174:269–280

    Article  Google Scholar 

  • Marba N, Walker DI (1999) Growth, flowering, and population dynamics of temperate Western Australian seagrasses. Mar Ecol Prog Ser 184:105–118

    Article  Google Scholar 

  • McGarigal K (2002) Landscape pattern metrics. In AH El-Shaarawi and WW Piegorsch (eds) Encyclopedia of Environmentrics, vol 2, Wiley, Sussex, pp 1135–1142

    Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. US Forest Service General Technical Report PNW p 122

    Google Scholar 

  • McMahon K, van Dijk K-J, Ruiz-Montoya L, Kendrick G, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte C (2014) The movement ecology of seagrasses. Proc R Soc B 281. https://doi.org/10.1098/rspb.2014.0878

  • McRea JE Jr, Greene HG, O’Connell VM, Wakefield WW (1999) Mapping marine habitats with high resolution sidescan sonar. Oceanol Acta 22:679–686

    Article  Google Scholar 

  • Mizerek T, Regan HM, Hovel KA (2011) Seagrass habitat loss and fragmentation influence management strategies for a blue crab Callinectes sapidus fishery. Mar Ecol Prog Ser 427:247–257

    Article  Google Scholar 

  • Murphey PL, Fonseca MS (1995) Role of high and low energy seagrass beds as nursery areas for Penaeus duorarum in North Carolina. Mar Ecol Prog Ser 121:91–98

    Article  Google Scholar 

  • Olesen B, Sand-Jensen K (1994) Patch dynamics of eelgrass Zostera marina. Mar Ecol Prog Ser 106:147

    Article  Google Scholar 

  • O’Neill RV, Riitters KH, Wickham JD, Jones KB (1999) Landscape pattern metrics and regional assessment. Ecosys Health 5:225–233

    Article  Google Scholar 

  • Ooi JLS, Van Niel KP, Kendrick GA, Holmes KW (2014) Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows. PLoS ONE 9:e86782. https://doi.org/10.1371/journal.pone.0086782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006a) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Orth RJ, Kendrick GA, Marion SR (2006b) Predation on Posidonia australis seeds in seagrass habitats of Rottnest Island, Western Australia: patterns and predators. Mar Ecol Prog Ser 313:105–114

    Article  Google Scholar 

  • Pastor J (2011) Mathematical ecology of populations and ecosystems. Wiley

    Google Scholar 

  • Phinn SR, Roelfsema CM, Dekker AG, Brando V, Anstee J (2008) Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ 112:3413–3425

    Article  Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New York

    Google Scholar 

  • Pittman SJ, McAlpine CA, Pittman KM (2004) Linking fish and prawns to their environment: a hierarchical landscape approach. Mar Ecol Prog Ser 283:233–254

    Article  Google Scholar 

  • Quammen ML, Onuf CP (1993) Laguna Madre: seagrass changes continue decades after salinity reduction. Estuaries 16:302–310

    Article  Google Scholar 

  • Rasheed MA (1999) Recovery of experimentally created gaps within a tropical Zostera capricorini (Aschers) seagrass meadow, Queensland Australia. J Exp Mar Biol Ecol 235:183–200

    Article  Google Scholar 

  • Reed RA, Johnson-Barnard J, Baker W (1996) Fragmentation of a forested rocky mountain landscape, 1950–1993. Biol Cons 75:267–277

    Article  Google Scholar 

  • Renton M, Airey M, Cambridge ML, Kendrick GA (2011) Modelling seagrass growth and development to evaluate transplanting strategies for restoration. Ann Botany 108:1213–1223

    Article  Google Scholar 

  • Riitters KH, O’Neill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecol 10:23–39

    Article  Google Scholar 

  • Rivers DO, Kendrick GA, Walker DI (2011) Microsites play an important role for seedling survival in the seagrass Amphibolis antarctica. J Exp Mar Biol Ecol 401:29–35

    Article  Google Scholar 

  • Robbins BD, Bell SS (2000) Dynamics of a subtidal seagrass landscape: seasonal and annual change in relation to water depth. Ecology 81:1193–1205

    Article  Google Scholar 

  • Robins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evolut 9:301–304

    Article  Google Scholar 

  • Roelfsema C, Lyons M, Kovacs E, Maxwell P, Saunders M, Samper-Villarreal J, Phinn S (2014) Multi-temporal mapping of seagrass cover, species and biomass: a semiautomated object based image analysis approach. Remote Sens Environ 150:172–187

    Article  Google Scholar 

  • Rollon RN, De Ruyter Van Steveninck ED, Van Vierssen W, Fortes MD (1998) Contrasting recolonization strategies in multi-species seagrass meadows. Marine Poll Bull 37:450–459

    Google Scholar 

  • Salita JT, Ekau W, Saint-Paul U (2003) Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Mar Ecol Prog Ser 247:183–195

    Article  Google Scholar 

  • Santos RO, Lirman D, Pittman SJ (2015) Long-term spatial dynamics in vegetated seascapes: fragmentation and habitat loss in a human-impacted subtropical lagoon. Mar Ecol 36:1–15

    Google Scholar 

  • Saura S (2002) Effects of minimum mapping unit on land cover data spatial configuration and composition. Int J Remote Sens 23:4853–4880

    Article  Google Scholar 

  • Schumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225

    Article  Google Scholar 

  • Seddon S, Connolly RM, Edyvane KS (2000) Large-scale seagrass dieback in northern Spencer Gulf, South Australia. Aquat Bot 66:297–310

    Article  Google Scholar 

  • Short FT, Burdick DM (1996) Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19:730–739

    Article  Google Scholar 

  • Sintes T, Marba N, Duarte CM, Kendrick G (2005) Non-linear processes in seagrass colonization explained by simple clonal growth rules. Oikos 108:165–175

    Article  Google Scholar 

  • Skilleter GA, Olds A, Loneragan NR, Zharikov Y (2005) The value of patches of intertidal seagrass to prawns depends on their proximity to mangroves. Mar Biol 147(2):353–365

    Article  Google Scholar 

  • Sleeman JC, Boggs GS, Radford BC, Kendrick GA (2005) Using agent-based models to aid reef restoration: enhancing coral cover and topographic complexity through the spatial arrangement of coral transplants. Restoration Ecol 13:685–694

    Article  Google Scholar 

  • Smith NM, Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoneaceae). Aquat Bot 74:57–70

    Article  Google Scholar 

  • Smith TM, Hindell JS, Jenkins GP, Connolly RM, Keough MJ (2011) Edge effects in patchy seagrass landscapes: the role of predation in determining fish distribution. J Exp Mar Biol Ecol 399:8–16

    Article  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2:1–10

    Google Scholar 

  • Solan M, Germano JD, Rhoads DC, Smtih C, Michaud E, Patty D, Wenzhöfer F, Kennedy B, Henriques C, Battle E, Carey D, Iocco L, Valente R, Watson J, Rodenberg R (2003) Towards a greater understanding of pattern, scale, and process in marine benthic systems: a picture is worth a thousand worms. J Exp Mar Biol Ecol 285–286:313–338

    Article  Google Scholar 

  • Statton J, Gustin-Craig S, Dixon K, Kendrick GA (2015) Edge effects along a seagrass margin result in an increased grazing risk on Posidonia australis transplants. PLoS ONE 10:e0137778. https://doi.org/10.1371/journal.pone.0137778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steele JH (1978) Spatial pattern in plankton communities. Plenum, New York

    Book  Google Scholar 

  • Suykerbuyk W, Bouma TJ, Govers LL, Giesen K, de Jong DJ, Herman P, van Katwijk MM (2016) Surviving in changing seascapes: sediment dynamics as bottleneck for long-term seagrass presence. Ecosystems 19(2):296–310

    Article  Google Scholar 

  • Tanner JE (2005) Edge effects on fauna in fragmented seagrass meadows. Austral Ecol 30:210–218

    Article  Google Scholar 

  • Tanner JE (2006) Landscape ecology of interactions between seagrass and mobile epifauna: the matrix matters. Estuar Coast Shelf Sci 68:404–412

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner SJ, Hewitt JE, Wilkinson MR, Morrisey DJ, Thrush SF, Cummings VJ, Funnell G (1999) Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries 22:1016–1032

    Article  Google Scholar 

  • van Teeffelen AJA, Ovaskainen O (2007) Can the cause of aggregation be inferred from species distributions? Oikos 116:4–16

    Article  Google Scholar 

  • Vidondo B, Duarte CM, Middelboe AL, Stefansen K, Luetzen T, Nielsen SL (1997) Dynamics of a landscape mosaic: Size and age distributions, growth and demography of seagrass Cymodocea nodosa patches. Mar Ecol Prog Ser 158:131–138

    Article  Google Scholar 

  • Villa F, Costanza R (2000) Design of multi-paradigm integrating modelling tools for ecological research. Environ Model Softw 15:169–177

    Article  Google Scholar 

  • Vonk JA, Christianen MJA, Stapel J (2010) Abundance, edge effect, and seasonality of fauna in mixed-species seagrass meadows in southwest Sulawesi, Indonesia. Marine Biology Research 6:282–291

    Article  Google Scholar 

  • Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987

    Article  Google Scholar 

  • Walker DI, Hillman KA, Kendrick GA, Lavery P (2001) Ecological significance of seagrasses: assessment for management of environmental impact in Western Australia. Ecol Eng 16:323–330

    Article  Google Scholar 

  • Waycott MW, Walker DI, James SH (1996) Genetic uniformity in Amphibolis antarctica, a dioecious seagrass. Heredity 76:578–585

    Article  Google Scholar 

  • Wedding LM, Lepczyk CA, Pittman SJ, Friedlander AM, Jorgensen S (2011) Quantifying seascape structure: extending terrestrial spatial pattern metrics to the marine realm. Mar Ecol Prog Ser 427:219–232

    Article  Google Scholar 

  • Williams SL (1990) Experimental studies of Caribbean seagrass bed development. Ecol Monograph 60:449–469

    Article  Google Scholar 

  • Wong S, Anand M, Bauch CT (2011) Agent-based modelling of clonal plant propagation across space: recapturing fairy rings, power laws and other phenomena. Ecological Informatics 6:127–135

    Article  Google Scholar 

  • Young PC, Kirkman H (1975) The seagrass communities of Moreton Bay, Queensland. Aquat Bot 1:191–202

    Article  Google Scholar 

  • Zhang X, Drake NA, and Wainwright J (2013) Spatial modelling and scaling issues. In: Environmental Modelling. Wiley, Ltd pp 69–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Kendrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kendrick, G.A., Hovey, R.K., Lyons, M., Roelfsema, C., Montoya, L.R., Phinn, S. (2018). Australian Seagrass Seascapes: Present Understanding and Future Research Directions. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_9

Download citation

Publish with us

Policies and ethics