Skip to main content
Log in

Fractal geometry: a tool for describing spatial patterns of plant communities

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Vegetation is a fractal because it exhibits variation over a continuum of scales. The spatial structure of sandrim, bryophyte, pocosin, suburban lawn, forest tree, and forest understory communities was analyzed with a combination of ordination and geostatistical methods. The results either suggest appropriate quadrat sizes and spacings for vegetation research, or they reveal that a sampling design compatible with classical statistics is impossible. The fractal dimensions obtained from these analyses are generally close to 2, implying weak spatial dependence. The fractal dimension is not a constant function of scale, implying that patterns of spatial variation at one scale cannot be extrapolated to other scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auerbach M. & Shmida A. 1987. Spatial scale and the determinants of plant species richness. Trends Ecol. Evol. 2: 238–242.

    Google Scholar 

  • Burrough P. A. 1981. Fractal dimensions of landscapes and other environmental data. Nature 294: 240–242.

    Google Scholar 

  • Burrough P. A. 1983. Multiscale sources of spatial variation in soil. I. Application of fractal concepts to nested levels of soil variation. J. Soil Sci. 34: 577–597.

    Google Scholar 

  • Clark I. 1979. Practical geostatistics. Applied Science Publishers, London.

    Google Scholar 

  • Cliff A. D. & Ord J. K. 1981. Spatial processes: models and applications. Pion, London.

    Google Scholar 

  • Cook D. G. & Pocock S. J. 1983. Multiple regression in geographical mortality studies, with allowance for spatially correlated errors. Biometrics 39: 361–371.

    Google Scholar 

  • Culling W. E. H. 1986. Highly erratic spatial variability of soil-pH on Iping Common, West Sussex. Catena 13: 81–98.

    Google Scholar 

  • Dietvorst P., van der Maarel E. & van der Putten H. 1982. A new approach to the minimal area of a plant community. Vegetatio 50: 77–91.

    Google Scholar 

  • Fingleton B. 1986. Analyzing cross-classified data with inherent spatial dependence. Geogr. Anal. 18: 48–61.

    Google Scholar 

  • Gauch H. G. 1982. Noise reduction by eigenvector ordinations. Ecology 63: 1643–1649.

    Google Scholar 

  • Greig-Smith P. 1961. Data on pattern within plant communities. I. The analysis of pattern. J. Ecology 49: 695–702.

    Google Scholar 

  • Hill M. O. 1979. DECORANA: a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics CEP-40. Cornell University, Ithaca, New York.

    Google Scholar 

  • Hill M. O. & GauchJr H. G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Hurlbert S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.

    Google Scholar 

  • Journel A. G. & Huijbregts C. 1978. Mining geostatistics. Academic Press, London.

    Google Scholar 

  • Kershaw K. A. 1963. Pattern in vegetation and its causality. Ecology 44: 377–388.

    Google Scholar 

  • Krummel J. P., Gardner R. H., Sugihara G., O'Neill R. V. & Coleman P. R. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–324.

    Google Scholar 

  • Legendre, P., Sokal, R. R., Oden, N. L. & Vaudor, A. 1987. Analysis of variance with a tocorrelation in both the variable and the classification criterion. Proc. 1. Conf. Int. Fed. Classification Soc., Aachen, p. 110.

  • Malanson G. P. 1985. Spatial autocorrelation and distributions of plant species on environmental gradients. Oikos 45: 278–280.

    Google Scholar 

  • Mandelbrot B. B. 1982. The fractal geometry of nature. Freeman, San Francisco.

    Google Scholar 

  • Olsvig-Whittaker L., Shachak M. & Yair A. 1983. Vegetation patterns related to environmental factors in a Negev Desert Watershed. Vegetatio 54: 153–165.

    Google Scholar 

  • Pennycuick C. J. & Kline N. C. 1986. Units of measurement for fractal extent, applied to the coastal distribution of bald eagle nests in the Aleutian Islands, Alaska. Oecologia 68: 254–258.

    Google Scholar 

  • Phillips J. D. 1985. Measuring complexity of environmental gradients. Vegetatio 64: 95–102.

    Google Scholar 

  • Robertson G. P. 1987. Geostatistics in ecology: interpolating with known variance. Ecology 68: 744–748.

    Google Scholar 

  • Sander L. M. 1986. Fractal growth processes. Nature 322: 789–793.

    Google Scholar 

  • Shmida A. & Ellner S. 1984. Coexistence of plant species with similar niches. Vegetatio 58: 29–55.

    Google Scholar 

  • Shmida A. & Wilson M. V. 1985. Biological determinants of species diversity. J. Biogeog. 12: 1–20.

    Google Scholar 

  • ter Braak, C. J. F. 1980. Binary mosaics and point quadrat sampling in ecology. Master's Thesis, University of Newcastle upon Tyne.

  • ter Braak C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Braak C. J. F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Google Scholar 

  • Vlcek J. & Cheung E. 1986. Fractal analysis of leaf shapes. Can. J. For. Res. 16: 124–127.

    Google Scholar 

  • Wilkinson, G. N., Eckert, S. R., Hancock, T. W. & Mayo, O. 1983. Nearest neighbour (NN) analysis of field experiments. J. R. Statist. Soc. Ser. B.: 151–211.

  • Wilson M. V. & Mohler C. L. 1983. Measuring compositional change along gradients. Vegetatio 54: 129–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, M.W. Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio 75, 91–102 (1988). https://doi.org/10.1007/BF00044631

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044631

Keywords

Navigation